A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yuanlong Zhang, Lekang Yuan, Qiyu Zhu, Jiamin Wu, Tobias Nöbauer, Rujin Zhang, Guihua Xiao, Mingrui Wang, Hao Xie, Zengcai Guo, Qionghai Dai, Alipasha Vaziri
{"title":"A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice","authors":"Yuanlong Zhang, Lekang Yuan, Qiyu Zhu, Jiamin Wu, Tobias Nöbauer, Rujin Zhang, Guihua Xiao, Mingrui Wang, Hao Xie, Zengcai Guo, Qionghai Dai, Alipasha Vaziri","doi":"10.1038/s41551-024-01226-2","DOIUrl":null,"url":null,"abstract":"Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 μm resolution over 300 μm depth-of-field across a field of view of 3.6 × 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions. An optimized head-mounted fluorescent mesoscope enables large-scale calcium imaging at single-neuron resolution in freely moving mice, facilitating neurobehavioural studies during social interactions and fear-conditioning experiments.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 6","pages":"754-774"},"PeriodicalIF":26.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-024-01226-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 μm resolution over 300 μm depth-of-field across a field of view of 3.6 × 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions. An optimized head-mounted fluorescent mesoscope enables large-scale calcium imaging at single-neuron resolution in freely moving mice, facilitating neurobehavioural studies during social interactions and fear-conditioning experiments.

Abstract Image

Abstract Image

用于对自由行为小鼠神经元活动进行大规模单神经元分辨成像的微型介镜
要探索神经元动态与伦理相关行为之间的关系,就必须使用与不受限制的动物行为兼容的技术来记录神经元群体的活动。然而,头戴式显微镜在适应重量限制以允许动物自由行为时,通常会影响视场、分辨率或深度范围,并且容易受到运动引起的伪影的影响。在此,我们报告了一种微型头戴式荧光介孔镜,我们对其进行了系统优化,使其能以单神经元分辨率进行钙成像,增加视野和景深,并能防止运动产生的伪影。该介镜重量不到 2.5 克,能以高达 16 Hz 的频率记录神经元群体活动,在自由移动的小鼠皮层中,在 3.6 × 3.6 平方毫米的视野内,分辨率为 4 μm,景深为 300 μm。我们用介镜记录了社交互动小鼠在自由探索和恐惧条件反射实验中的大规模神经元群活动,并研究了多个皮层区域的神经血管耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信