Efficient CO2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-06-20 DOI:10.1039/D4NR01173B
Jing Zhou, Qianyue Liang, Pu Huang, Jing Xu, Tengfei Niu, Yao Wang, Yuming Dong and Jiawei Zhang
{"title":"Efficient CO2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields†","authors":"Jing Zhou, Qianyue Liang, Pu Huang, Jing Xu, Tengfei Niu, Yao Wang, Yuming Dong and Jiawei Zhang","doi":"10.1039/D4NR01173B","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic reduction of CO<small><sub>2</sub></small> into multicarbon (C<small><sub>2+</sub></small>) products offers a promising pathway for CO<small><sub>2</sub></small> utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO<small><sub>2</sub></small> to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FE<small><sub>ethanol</sub></small>) of 47% and a formation rate of 320 μmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, with an overall C<small><sub>2+</sub></small> product faradaic efficiency (FE<small><sub>C<small><sub>2+</sub></small></sub></small>) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO<small><sub>2</sub></small> activation and facilitating C–C coupling for deep CO<small><sub>2</sub></small> reduction. <em>In situ</em> Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO<small><sub>2</sub></small> electroreduction, presenting a new avenue for catalyst design aiming at converting CO<small><sub>2</sub></small> to ethanol.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 27","pages":" 13011-13018"},"PeriodicalIF":5.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01173b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic reduction of CO2 into multicarbon (C2+) products offers a promising pathway for CO2 utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO2 to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FEethanol) of 47% and a formation rate of 320 μmol h−1 cm−2, with an overall C2+ product faradaic efficiency (FEC2+) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO2 activation and facilitating C–C coupling for deep CO2 reduction. In situ Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO2 electroreduction, presenting a new avenue for catalyst design aiming at converting CO2 to ethanol.

Abstract Image

利用尖端曲率诱导的局部电场将二氧化碳高效电还原为乙醇
通过电催化将二氧化碳还原成多碳(C2+)产品为二氧化碳的利用提供了一条前景广阔的途径。然而,实现对乙醇等多碳醇的高选择性仍然是一项挑战。在这项工作中,我们提出了一种新型 CuO 纳米花催化剂,其尖端曲率经过工程化设计,在将 CO2 电还原为乙醇的过程中实现了显著的选择性和效率。这种催化剂的乙醇法拉第效率(FEethanol)为 47%,形成率为 325 μmol h-1 cm-2,C2+ 产物的总体法拉第效率(FEC2+)达到约 78%。我们将这一性能归功于催化剂的尖锐尖端,它能产生强大的局部电场,从而加速二氧化碳的活化,促进 C-C 耦合以实现二氧化碳的深度还原。原位拉曼光谱显示,在操作条件下,*OH 的覆盖率增加,*OH 吸附的增强通过氢键作用促进了*CHCOH 中间体的稳定,从而提高了乙醇的选择性。我们的研究结果证明了局部电场在改变二氧化碳电还原反应动力学中的关键作用,为旨在将二氧化碳转化为乙醇的催化剂设计提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信