{"title":"The B-spline mapping function (BMF): representing anisotropic troposphere delays by a single self-consistent functional model","authors":"Shengping He, Thomas Hobiger, Doris Becker","doi":"10.1007/s00190-024-01864-z","DOIUrl":null,"url":null,"abstract":"<p>Troposphere’s asymmetry can introduce errors ranging from centimeters to decimeters at low elevation angles, which cannot be ignored in high-precision positioning technology and meteorological research. The traditional two-axis gradient model, which strongly relies on an open-sky environment of the receiver, exhibits misfits at low elevation angles due to their simplistic nature. In response, we propose a directional mapping function based on cyclic B-splines named B-spline mapping function (BMF). This model replaces the conventional approach, which is based on estimating Zenith Wet Delay and gradient parameters, by estimating only four parameters which enable a continuous characterization of the troposphere delay across any directions. A simulation test, based on a numerical weather model, was conducted to validate the superiority of cyclic B-spline functions in representing tropospheric asymmetry. Based on an extensive analysis, the performance of BMF was assessed within precise point positioning using data from 45 International GNSS Service stations across Europe and Africa. It is revealed that BMF improves the coordinate repeatability by approximately <span>\\(10\\%\\)</span> horizontally and about <span>\\(5\\%\\)</span> vertically. Such improvements are particularly pronounced under heavy rainfall conditions, where the improvement of 3-dimensional root mean square error reaches up to <span>\\(13\\%\\)</span>.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"44 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01864-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Troposphere’s asymmetry can introduce errors ranging from centimeters to decimeters at low elevation angles, which cannot be ignored in high-precision positioning technology and meteorological research. The traditional two-axis gradient model, which strongly relies on an open-sky environment of the receiver, exhibits misfits at low elevation angles due to their simplistic nature. In response, we propose a directional mapping function based on cyclic B-splines named B-spline mapping function (BMF). This model replaces the conventional approach, which is based on estimating Zenith Wet Delay and gradient parameters, by estimating only four parameters which enable a continuous characterization of the troposphere delay across any directions. A simulation test, based on a numerical weather model, was conducted to validate the superiority of cyclic B-spline functions in representing tropospheric asymmetry. Based on an extensive analysis, the performance of BMF was assessed within precise point positioning using data from 45 International GNSS Service stations across Europe and Africa. It is revealed that BMF improves the coordinate repeatability by approximately \(10\%\) horizontally and about \(5\%\) vertically. Such improvements are particularly pronounced under heavy rainfall conditions, where the improvement of 3-dimensional root mean square error reaches up to \(13\%\).
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics