Roberto La Scala , Federico Pintore , Sharwan K. Tiwari , Andrea Visconti
{"title":"A multistep strategy for polynomial system solving over finite fields and a new algebraic attack on the stream cipher Trivium","authors":"Roberto La Scala , Federico Pintore , Sharwan K. Tiwari , Andrea Visconti","doi":"10.1016/j.ffa.2024.102452","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we introduce a multistep generalization of the guess-and-determine or hybrid strategy for solving a system of multivariate polynomial equations over a finite field. In particular, we propose performing the exhaustive evaluation of a subset of variables stepwise, that is, by incrementing the size of such subset each time that an evaluation leads to a polynomial system which is possibly unfeasible to solve. The decision about which evaluation to extend is based on a preprocessing consisting in computing an incomplete Gröbner basis after the current evaluation, which possibly generates linear polynomials that are used to eliminate further variables. If the number of remaining variables in the system is deemed still too high, the evaluation is extended and the preprocessing is iterated. Otherwise, we solve the system by a complete Gröbner basis computation.</p><p>Having in mind cryptanalytic applications, we present an implementation of this strategy in an algorithm called <span>MultiSolve</span> which is designed for polynomial systems having at most one solution. We prove explicit formulas for its complexity which are based on probability distributions that can be easily estimated by performing the proposed preprocessing on a testset of evaluations for different subsets of variables. We prove that an optimal complexity of <span>MultiSolve</span> is achieved by using a full multistep strategy with a maximum number of steps and in turn the standard guess-and-determine strategy, which essentially is a strategy consisting of a single step, is the worst choice. Finally, we extensively study the behaviour of <span>MultiSolve</span> when performing an algebraic attack on the well-known stream cipher <span>Trivium</span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"98 ","pages":"Article 102452"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000911","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we introduce a multistep generalization of the guess-and-determine or hybrid strategy for solving a system of multivariate polynomial equations over a finite field. In particular, we propose performing the exhaustive evaluation of a subset of variables stepwise, that is, by incrementing the size of such subset each time that an evaluation leads to a polynomial system which is possibly unfeasible to solve. The decision about which evaluation to extend is based on a preprocessing consisting in computing an incomplete Gröbner basis after the current evaluation, which possibly generates linear polynomials that are used to eliminate further variables. If the number of remaining variables in the system is deemed still too high, the evaluation is extended and the preprocessing is iterated. Otherwise, we solve the system by a complete Gröbner basis computation.
Having in mind cryptanalytic applications, we present an implementation of this strategy in an algorithm called MultiSolve which is designed for polynomial systems having at most one solution. We prove explicit formulas for its complexity which are based on probability distributions that can be easily estimated by performing the proposed preprocessing on a testset of evaluations for different subsets of variables. We prove that an optimal complexity of MultiSolve is achieved by using a full multistep strategy with a maximum number of steps and in turn the standard guess-and-determine strategy, which essentially is a strategy consisting of a single step, is the worst choice. Finally, we extensively study the behaviour of MultiSolve when performing an algebraic attack on the well-known stream cipher Trivium.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.