Esterification modified corn starch composite with chitosan and PVP for enhanced mechanical properties and antimicrobial freshness preservation of starch-based films
Dequan Wei , Shenghua Lv , Jinru Liu , Jingjing Zuo , Yanlu Mu , Leipeng Liu , Tingxiang He , Qiao Zeng
{"title":"Esterification modified corn starch composite with chitosan and PVP for enhanced mechanical properties and antimicrobial freshness preservation of starch-based films","authors":"Dequan Wei , Shenghua Lv , Jinru Liu , Jingjing Zuo , Yanlu Mu , Leipeng Liu , Tingxiang He , Qiao Zeng","doi":"10.1016/j.reactfunctpolym.2024.105991","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional plastic packaging films may bring convenience to people, but may also bring fossil energy shortage and pollution problems. Thus, it is of great research significance to use renewable resources to develop biodegradable green packaging materials instead of traditional petroleum-based film materials. In this study, aryl esterified starch was prepared by graft modification of corn starch using acryloyl esterification. Then ES/CS/PVP composite film materials were prepared by introducing chitosan and polyvinylpyrrolidone (PVP) from esterified starch. Chitosan and PVP were introduced to greatly improve the antimicrobial and mechanical properties of the composite film. And the chemical structure and microscopic morphology of ES/CS/PVP were characterised by FT-IR, XRD, SEM and XPS. The results showed that the ES/CS/PVP composite film had excellent tensile properties and good antimicrobial freshness preservation properties. The maximum tensile strength reached 51.69 MPa and the water vapour permeability was 4.76 × 10<sup>−5</sup> g/mm∙d. The results of antimicrobial freshness preservation experiments show that the composite film has excellent antimicrobial freshness preservation performance, enough to keep cherries with good freshness in 6 days.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001664","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional plastic packaging films may bring convenience to people, but may also bring fossil energy shortage and pollution problems. Thus, it is of great research significance to use renewable resources to develop biodegradable green packaging materials instead of traditional petroleum-based film materials. In this study, aryl esterified starch was prepared by graft modification of corn starch using acryloyl esterification. Then ES/CS/PVP composite film materials were prepared by introducing chitosan and polyvinylpyrrolidone (PVP) from esterified starch. Chitosan and PVP were introduced to greatly improve the antimicrobial and mechanical properties of the composite film. And the chemical structure and microscopic morphology of ES/CS/PVP were characterised by FT-IR, XRD, SEM and XPS. The results showed that the ES/CS/PVP composite film had excellent tensile properties and good antimicrobial freshness preservation properties. The maximum tensile strength reached 51.69 MPa and the water vapour permeability was 4.76 × 10−5 g/mm∙d. The results of antimicrobial freshness preservation experiments show that the composite film has excellent antimicrobial freshness preservation performance, enough to keep cherries with good freshness in 6 days.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.