Edwin Ino Jung , Hyun Jeong Lee , Jiweon Kim , Qamar Tabrez Siddiqui , Minju Kim , Zhiqun Lin , Cheolmin Park , Dong Ha Kim
{"title":"Recent progress on chiral perovskites as chiroptical active layers for next-generation LEDs","authors":"Edwin Ino Jung , Hyun Jeong Lee , Jiweon Kim , Qamar Tabrez Siddiqui , Minju Kim , Zhiqun Lin , Cheolmin Park , Dong Ha Kim","doi":"10.1016/j.mser.2024.100817","DOIUrl":null,"url":null,"abstract":"<div><p>Metal halide perovskites (MHPs) have drawn intensive attention as emitters for their application in light emitting diodes (LEDs). MHPs have been actively studied after the first discovery in 2009 for solar cell applications. They show excellent optoelectronic properties such as high photoluminescence quantum yields, widely tunable band gap, narrow emission width, and high charge-carrier mobility. Chiral MHPs can be utilized as circularly polarized luminescent sources, ferroelectric materials, nonlinear optical materials, etc. In this review, we discuss the recent progress of chiral perovskites as emitting materials and their applications in next generation LEDs. The ability of chiral MHPs to induce a chiral-induced spin selectivity effect positions them as efficient spin-filters in spin-polarized LEDs. Additionally, the combination of chiral properties and optoelectronic features in these MHPs renders them ideal for use as emissive layers in circularly polarized LEDs. This comprehensive discussion aims to deepen understanding of chiroptical properties in chiral MHPs, furthering the development of chiral materials, chiropto-electronics, and spin/CPL-based applications.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"160 ","pages":"Article 100817"},"PeriodicalIF":31.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites (MHPs) have drawn intensive attention as emitters for their application in light emitting diodes (LEDs). MHPs have been actively studied after the first discovery in 2009 for solar cell applications. They show excellent optoelectronic properties such as high photoluminescence quantum yields, widely tunable band gap, narrow emission width, and high charge-carrier mobility. Chiral MHPs can be utilized as circularly polarized luminescent sources, ferroelectric materials, nonlinear optical materials, etc. In this review, we discuss the recent progress of chiral perovskites as emitting materials and their applications in next generation LEDs. The ability of chiral MHPs to induce a chiral-induced spin selectivity effect positions them as efficient spin-filters in spin-polarized LEDs. Additionally, the combination of chiral properties and optoelectronic features in these MHPs renders them ideal for use as emissive layers in circularly polarized LEDs. This comprehensive discussion aims to deepen understanding of chiroptical properties in chiral MHPs, furthering the development of chiral materials, chiropto-electronics, and spin/CPL-based applications.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.