Fu-Zheng-Yi-Liu Formula inhibits the stem cells and metastasis of prostate cancer via tumor-associated macrophages/C-C motif chemokine ligand 5 pathway in tumor microenvironment
Chiwei CHEN , Renlun HUANG , Neng WANG , Yifeng ZHENG , Jianfu ZHOU , Bowen YANG , Xuan WANG , Juping ZHANG , Bo PAN , Zhiqiang CHEN , Shengqi WANG , Zhiyu WANG , Songtao XIANG
{"title":"Fu-Zheng-Yi-Liu Formula inhibits the stem cells and metastasis of prostate cancer via tumor-associated macrophages/C-C motif chemokine ligand 5 pathway in tumor microenvironment","authors":"Chiwei CHEN , Renlun HUANG , Neng WANG , Yifeng ZHENG , Jianfu ZHOU , Bowen YANG , Xuan WANG , Juping ZHANG , Bo PAN , Zhiqiang CHEN , Shengqi WANG , Zhiyu WANG , Songtao XIANG","doi":"10.1016/S1875-5364(24)60653-9","DOIUrl":null,"url":null,"abstract":"<div><p>Prostate cancer (PCa) is the second most common malignancy among men globally. The Fu-Zheng-Yi-Liu (FZYL) Formula has been widely utilized in the treatment of PCa. This study investigates whether the FZYL Formula can inhibit PCa by targeting the TAMs/CCL5 pathway. We conducted <em>in vitro</em> co-cultures and <em>in vivo</em> co-injections of PCa cells and TAMs to mimic their interaction. Results showed that the FZYL Formula significantly reduced the proliferation, colony formation, subpopulations of PCSCs, and sphere-formation efficacy of PCa cells, even in the presence of TAM co-culture. Additionally, the Formula markedly decreased the migration, invasion, and epithelial-mesenchymal transition (EMT) of PCa cells induced by TAMs. The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion, with minimal cytotoxicity observed. Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula, as the addition of exogenous CCL5 partially reversed the formula’s inhibitory effects on PCSCs self-renewal in the co-culture system. Importantly, the Formula also significantly inhibited the growth of PCa xenografts, bone metastasis, and PCSCs activity <em>in vivo</em> by targeting the TAMs/CCL5 pathway. Overall, this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.</p></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536424606539","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) is the second most common malignancy among men globally. The Fu-Zheng-Yi-Liu (FZYL) Formula has been widely utilized in the treatment of PCa. This study investigates whether the FZYL Formula can inhibit PCa by targeting the TAMs/CCL5 pathway. We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their interaction. Results showed that the FZYL Formula significantly reduced the proliferation, colony formation, subpopulations of PCSCs, and sphere-formation efficacy of PCa cells, even in the presence of TAM co-culture. Additionally, the Formula markedly decreased the migration, invasion, and epithelial-mesenchymal transition (EMT) of PCa cells induced by TAMs. The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion, with minimal cytotoxicity observed. Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula, as the addition of exogenous CCL5 partially reversed the formula’s inhibitory effects on PCSCs self-renewal in the co-culture system. Importantly, the Formula also significantly inhibited the growth of PCa xenografts, bone metastasis, and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway. Overall, this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.
期刊介绍:
The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM).
Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.