Bartłomiej Surmacz, Daniel Stec, Monika Prus-Frankowska, Mateusz Buczek, Łukasz Michalczyk, Piotr Łukasik
{"title":"Pinpointing the microbiota of tardigrades: What is really there?","authors":"Bartłomiej Surmacz, Daniel Stec, Monika Prus-Frankowska, Mateusz Buczek, Łukasz Michalczyk, Piotr Łukasik","doi":"10.1111/1462-2920.16659","DOIUrl":null,"url":null,"abstract":"<p>Microbiota are considered significant in the biology of tardigrades, yet their diversity and distribution remain largely unexplored. This is partly due to the methodological challenges associated with studying the microbiota of small organisms that inhabit microbe-rich environments. In our study, we characterized the microbiota of 31 species of cultured tardigrades using 16S rRNA amplicon sequencing. We employed various sample preparation strategies and multiple types of controls and estimated the number of microbes in samples using synthetic DNA spike-ins. We also reanalysed data from previous tardigrade microbiome studies. Our findings suggest that the microbial communities of cultured tardigrades are predominantly composed of bacterial genotypes originating from food, medium, or reagents. Despite numerous experiments, we found it challenging to identify strains that were enriched in certain tardigrades, which would have indicated likely symbiotic associations. Putative tardigrade-associated microbes rarely constituted more than 20% of the datasets, although some matched symbionts identified in other studies. We also uncovered serious contamination issues in previous tardigrade microbiome studies, casting doubt on some of their conclusions. We concluded that tardigrades are not universally dependent on specialized microbes. Our work underscores the need for rigorous safeguards in studies of the microbiota of microscopic organisms and serves as a cautionary tale for studies involving samples with low microbiome abundance.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16659","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiota are considered significant in the biology of tardigrades, yet their diversity and distribution remain largely unexplored. This is partly due to the methodological challenges associated with studying the microbiota of small organisms that inhabit microbe-rich environments. In our study, we characterized the microbiota of 31 species of cultured tardigrades using 16S rRNA amplicon sequencing. We employed various sample preparation strategies and multiple types of controls and estimated the number of microbes in samples using synthetic DNA spike-ins. We also reanalysed data from previous tardigrade microbiome studies. Our findings suggest that the microbial communities of cultured tardigrades are predominantly composed of bacterial genotypes originating from food, medium, or reagents. Despite numerous experiments, we found it challenging to identify strains that were enriched in certain tardigrades, which would have indicated likely symbiotic associations. Putative tardigrade-associated microbes rarely constituted more than 20% of the datasets, although some matched symbionts identified in other studies. We also uncovered serious contamination issues in previous tardigrade microbiome studies, casting doubt on some of their conclusions. We concluded that tardigrades are not universally dependent on specialized microbes. Our work underscores the need for rigorous safeguards in studies of the microbiota of microscopic organisms and serves as a cautionary tale for studies involving samples with low microbiome abundance.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens