Zekun Xu , Xiaoning Liu , Chuangchuang Zhang , Mengting Ma , Bilatu Agza Gebre , Solomon Abate Mekonnen , Harold Corke , Zhongquan Sui
{"title":"Mild alkali treatment alters structure and properties of maize starch: The potential role of alkali in starch chemical modification","authors":"Zekun Xu , Xiaoning Liu , Chuangchuang Zhang , Mengting Ma , Bilatu Agza Gebre , Solomon Abate Mekonnen , Harold Corke , Zhongquan Sui","doi":"10.1016/j.ijbiomac.2024.133238","DOIUrl":null,"url":null,"abstract":"<div><p>Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g<sup>−1</sup> to 21.95 J·g<sup>−1</sup>, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"274 ","pages":"Article 133238"},"PeriodicalIF":7.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024040431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g−1 to 21.95 J·g−1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.