Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dhruba Jyoti Deka, Chandan Biswas, Ratul Paul, Jiabin Xu, Yining Huang, Duy Quang Dao, John Mondal
{"title":"Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture.","authors":"Dhruba Jyoti Deka, Chandan Biswas, Ratul Paul, Jiabin Xu, Yining Huang, Duy Quang Dao, John Mondal","doi":"10.1002/asia.202400515","DOIUrl":null,"url":null,"abstract":"<p><p>The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO<sub>2</sub> capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO<sub>2</sub> adsorption to attenuate green house gases. In this regard, two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by one-pot condensation polymerization using a facile synthetic strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m<sup>2</sup>g<sup>-1</sup>, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO<sub>2</sub> adsorption study. The CO<sub>2</sub> uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g<sup>-1</sup>, at 273 K respectively. Further, in-situ static <sup>13</sup>C NMR experiment shows that CO<sub>2</sub> molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO<sub>2</sub> adsorption mechanism by density functional theory (DFT) calculations also shows that CO<sub>2</sub> adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO<sub>2</sub> molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Further, Non-covalent interaction (NCI) plot reveals that CO<sub>2</sub> molecules adsorb more on the Ph-POP than Tt-POP, which can be explain by hydrogen bond formation in case of Tt-POP repeating units turning aside CO<sub>2</sub> molecule to interact with the Ph component. Overall, our present study reflects the comprising effects of surface area of the solid adsorbents as well as their functionality can be beneficial for developing efficient hypercrosslinked porous polymers as solid CO<sub>2</sub> adsorbent.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400515","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO2 capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO2 adsorption to attenuate green house gases. In this regard, two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by one-pot condensation polymerization using a facile synthetic strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. Further, in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Further, Non-covalent interaction (NCI) plot reveals that CO2 molecules adsorb more on the Ph-POP than Tt-POP, which can be explain by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component. Overall, our present study reflects the comprising effects of surface area of the solid adsorbents as well as their functionality can be beneficial for developing efficient hypercrosslinked porous polymers as solid CO2 adsorbent.

协调多孔有机聚合物纳米捕集器的化学功能和表面积,以调整二氧化碳捕集。
通过简单的一锅缩合聚合策略,我们开发出了两种富含羟基的超交联持久性有机污染物,即 Ph/Tt-POP。Ph/Tt-POP 的高比表面积(分别为 1057 和 893 m2g-1)和持久性有机污染物框架中的杂原子功能促使我们对这种材料进行二氧化碳吸附研究。原位静态 13C NMR 实验表明,Tt-POP 中二氧化碳分子的流动性似乎比 Ph-POP 中的要小,这可能是由于 Tt-POP 框架中存在三嗪官能团和大量的 -OH 基团。通过密度泛函理论(DFT)计算对二氧化碳吸附机理的深入研究还表明,二氧化碳吸附在由两个苄基环形成的笼子上代表了最稳定的相互作用,与 Tt-POP 相比,二氧化碳分子更有利于吸附在 Ph-POP 上,其相互作用能值为负值。非共价相互作用(NCI)图显示,与 Tt-POP 相比,二氧化碳分子在 Ph-POP 上的吸附量更大,这可以解释为 Tt-POP 重复单元中形成的氢键使二氧化碳分子转向一侧,从而与 Ph 成分相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信