Shi Feng, Chundong Xue, Cunliang Pan and Shengyang Tao
{"title":"Droplet drinking in constrictions†","authors":"Shi Feng, Chundong Xue, Cunliang Pan and Shengyang Tao","doi":"10.1039/D4LC00381K","DOIUrl":null,"url":null,"abstract":"<p >Droplets generated through microfluidics serve as a common platform for assembling artificial cells, which are feasibly tailored using microfluidic methodology. The ability of natural cells to undergo shape changes, such as phagocytosis, is a typical characteristic that researchers aim to mimic in artificial cells. However, simulating the deformation behavior of natural cells within droplets is exceptionally challenging. Here, this study reports a pinocytosis-like phenomenon observed in droplets, termed “droplet drinking”. When droplets traverse a capillary with constrictions, the shear force from the continuous-phase fluid induces relative motion within the droplets, creating concave regions at the rear. These regions facilitate engulfing of the continuous-phase fluid, resulting in the formation of multiple emulsions. This behavior is influenced by the capillary number, and the size of the ingested droplets is governed by the interfacial tension between the two phases. The production of multicore or multi-shell emulsions can be easily accomplished by making slight adjustments to the constrictions. Furthermore, this method demonstrates the integration of reactants into pre-existing droplets, facilitating biochemical reactions. This study presents a convenient approach for generating complex emulsions and an innovative strategy for studying deformation behavior in droplet-based artificial cells.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 14","pages":" 3412-3421"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00381k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Droplets generated through microfluidics serve as a common platform for assembling artificial cells, which are feasibly tailored using microfluidic methodology. The ability of natural cells to undergo shape changes, such as phagocytosis, is a typical characteristic that researchers aim to mimic in artificial cells. However, simulating the deformation behavior of natural cells within droplets is exceptionally challenging. Here, this study reports a pinocytosis-like phenomenon observed in droplets, termed “droplet drinking”. When droplets traverse a capillary with constrictions, the shear force from the continuous-phase fluid induces relative motion within the droplets, creating concave regions at the rear. These regions facilitate engulfing of the continuous-phase fluid, resulting in the formation of multiple emulsions. This behavior is influenced by the capillary number, and the size of the ingested droplets is governed by the interfacial tension between the two phases. The production of multicore or multi-shell emulsions can be easily accomplished by making slight adjustments to the constrictions. Furthermore, this method demonstrates the integration of reactants into pre-existing droplets, facilitating biochemical reactions. This study presents a convenient approach for generating complex emulsions and an innovative strategy for studying deformation behavior in droplet-based artificial cells.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.