Anshumali Mittal, Matthew F. Martin, Elena J. Levin, Christopher Adams, Meng Yang, Laurent Provins, Adrian Hall, Martin Procter, Marie Ledecq, Alexander Hillisch, Christian Wolff, Michel Gillard, Peter S. Horanyi, Jonathan A. Coleman
{"title":"Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants","authors":"Anshumali Mittal, Matthew F. Martin, Elena J. Levin, Christopher Adams, Meng Yang, Laurent Provins, Adrian Hall, Martin Procter, Marie Ledecq, Alexander Hillisch, Christian Wolff, Michel Gillard, Peter S. Horanyi, Jonathan A. Coleman","doi":"10.1038/s41594-024-01335-1","DOIUrl":null,"url":null,"abstract":"Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s. The synaptic vesicle protein 2 family are essential membrane proteins found in the brain that bind synaptotagmin and are targeted by anti-seizure medications. Structures reveal common features found in transport proteins, and the basis of ligand binding and selectivity.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 12","pages":"1964-1974"},"PeriodicalIF":12.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01335-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s. The synaptic vesicle protein 2 family are essential membrane proteins found in the brain that bind synaptotagmin and are targeted by anti-seizure medications. Structures reveal common features found in transport proteins, and the basis of ligand binding and selectivity.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.