Defective flow space limits the scaling up of turbulence bioreactors for platelet generation

Haruki Okamoto, Kosuke Fujio, Sou Nakamura, Yasuo Harada, Hideki Hayashi, Natsumi Higashi, Atsushi Ninomiya, Ryota Tanaka, Naoshi Sugimoto, Naoya Takayama, Atsushi Kaneda, Akira Sawaguchi, Yoshikazu Kato, Koji Eto
{"title":"Defective flow space limits the scaling up of turbulence bioreactors for platelet generation","authors":"Haruki Okamoto, Kosuke Fujio, Sou Nakamura, Yasuo Harada, Hideki Hayashi, Natsumi Higashi, Atsushi Ninomiya, Ryota Tanaka, Naoshi Sugimoto, Naoya Takayama, Atsushi Kaneda, Akira Sawaguchi, Yoshikazu Kato, Koji Eto","doi":"10.1038/s44172-024-00219-y","DOIUrl":null,"url":null,"abstract":"To complement donor-dependent platelets supplies, we previously developed an ex vivo manufacturing system using induced pluripotent stem cell (iPSC)-derived expandable immortalized megakaryocyte progenitor cell lines (imMKCLs), and a turbulent flow bioreactor to generate iPSC-derived platelets products (iPSC-PLTs). However, the tank size of the bioreactor was limited to 10 L. Here we examined the feasibility of scaling up to 50 L with reciprocal motion by two impellers. Under optimized turbulence parameters corresponding to 10 L bioreactor, 50 L bioreactor elicited iPSC-PLTs with intact in vivo hemostatic function but with less production efficiency. This insufficiency was caused by increased defective turbulent flow space. A computer simulation proposed that designing 50 L turbulent flow bioreactor with three impellers or a new bioreactor with a modified rotating impeller and unique structure reduces this space. These findings indicate that large-scale iPSC-PLTs manufacturing from cultured imMKCLs requires optimization of the tank structure in addition to optimal turbulent energy and shear stress. Haruki Okamoto and colleagues demonstrate that tank structure is crucial for large-scale platelet production from cultured immortalized megakaryocyte progenitor cell lines, due to the increase in defective turbulent flow space. These insights could guide the development of new bioreactors with improved production efficiency.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00219-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00219-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To complement donor-dependent platelets supplies, we previously developed an ex vivo manufacturing system using induced pluripotent stem cell (iPSC)-derived expandable immortalized megakaryocyte progenitor cell lines (imMKCLs), and a turbulent flow bioreactor to generate iPSC-derived platelets products (iPSC-PLTs). However, the tank size of the bioreactor was limited to 10 L. Here we examined the feasibility of scaling up to 50 L with reciprocal motion by two impellers. Under optimized turbulence parameters corresponding to 10 L bioreactor, 50 L bioreactor elicited iPSC-PLTs with intact in vivo hemostatic function but with less production efficiency. This insufficiency was caused by increased defective turbulent flow space. A computer simulation proposed that designing 50 L turbulent flow bioreactor with three impellers or a new bioreactor with a modified rotating impeller and unique structure reduces this space. These findings indicate that large-scale iPSC-PLTs manufacturing from cultured imMKCLs requires optimization of the tank structure in addition to optimal turbulent energy and shear stress. Haruki Okamoto and colleagues demonstrate that tank structure is crucial for large-scale platelet production from cultured immortalized megakaryocyte progenitor cell lines, due to the increase in defective turbulent flow space. These insights could guide the development of new bioreactors with improved production efficiency.

Abstract Image

流动空间的缺陷限制了用于生成血小板的湍流生物反应器的规模扩大
为了补充依赖供体的血小板供应,我们之前开发了一种体外制造系统,利用诱导多能干细胞(iPSC)衍生的可扩增永生巨核祖细胞系(imMKCLs)和湍流生物反应器生成 iPSC 衍生的血小板产品(iPSC-PLTs)。然而,生物反应器的水箱容量仅限于 10 L。在此,我们研究了利用两个叶轮的往复运动将容积扩大到 50 L 的可行性。在对应 10 升生物反应器的优化湍流参数下,50 升生物反应器诱导出的 iPSC-PLTs 具有完整的体内止血功能,但生产效率较低。这种不足是由于湍流空间缺陷增加造成的。计算机模拟提出,设计具有三个叶轮的 50 升湍流生物反应器或具有改良旋转叶轮和独特结构的新型生物反应器可减少这一空间。这些发现表明,利用培养的 imMKCLs 大规模制造 iPSC-PLTs 除了需要优化湍流能和剪切应力外,还需要优化水槽结构。Haruki Okamoto 及其同事证明,由于缺陷湍流空间的增加,水槽结构对于从培养的永生巨核祖细胞系大规模生产血小板至关重要。这些见解可以指导开发新的生物反应器,提高生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信