Deep learning for personalized health monitoring and prediction: A review

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Robertas Damaševičius, Senthil Kumar Jagatheesaperumal, Rajesh N. V. P. S. Kandala, Sadiq Hussain, Roohallah Alizadehsani, Juan M. Gorriz
{"title":"Deep learning for personalized health monitoring and prediction: A review","authors":"Robertas Damaševičius,&nbsp;Senthil Kumar Jagatheesaperumal,&nbsp;Rajesh N. V. P. S. Kandala,&nbsp;Sadiq Hussain,&nbsp;Roohallah Alizadehsani,&nbsp;Juan M. Gorriz","doi":"10.1111/coin.12682","DOIUrl":null,"url":null,"abstract":"<p>Personalized health monitoring and prediction are indispensable in advancing healthcare delivery, particularly amidst the escalating prevalence of chronic illnesses and the aging population. Deep learning (DL) stands out as a promising avenue for crafting personalized health monitoring systems adept at forecasting health outcomes with precision and efficiency. As personal health data becomes increasingly accessible, DL-based methodologies offer a compelling strategy for enhancing healthcare provision through accurate and timely prognostications of health conditions. This article offers a comprehensive examination of recent advancements in employing DL for personalized health monitoring and prediction. It summarizes a diverse range of DL architectures and their practical implementations across various realms, such as wearable technologies, electronic health records (EHRs), and data accumulated from social media platforms. Moreover, it elucidates the obstacles encountered and outlines future directions in leveraging DL for personalized health monitoring, thereby furnishing invaluable insights into the immense potential of DL in this domain.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12682","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized health monitoring and prediction are indispensable in advancing healthcare delivery, particularly amidst the escalating prevalence of chronic illnesses and the aging population. Deep learning (DL) stands out as a promising avenue for crafting personalized health monitoring systems adept at forecasting health outcomes with precision and efficiency. As personal health data becomes increasingly accessible, DL-based methodologies offer a compelling strategy for enhancing healthcare provision through accurate and timely prognostications of health conditions. This article offers a comprehensive examination of recent advancements in employing DL for personalized health monitoring and prediction. It summarizes a diverse range of DL architectures and their practical implementations across various realms, such as wearable technologies, electronic health records (EHRs), and data accumulated from social media platforms. Moreover, it elucidates the obstacles encountered and outlines future directions in leveraging DL for personalized health monitoring, thereby furnishing invaluable insights into the immense potential of DL in this domain.

用于个性化健康监测和预测的深度学习:综述
个性化健康监测和预测是推进医疗保健服务不可或缺的因素,尤其是在慢性病发病率不断攀升和人口老龄化的背景下。深度学习(DL)是打造个性化健康监测系统的一条大有可为的途径,该系统善于精准、高效地预测健康结果。随着个人健康数据变得越来越容易获取,基于深度学习的方法为通过准确、及时地预报健康状况来提高医疗保健服务水平提供了令人信服的策略。本文全面探讨了在利用 DL 进行个性化健康监测和预测方面的最新进展。文章总结了可穿戴技术、电子健康记录(EHR)和社交媒体平台积累的数据等不同领域的各种数字语言架构及其实际应用。此外,它还阐明了在利用数字语言进行个性化健康监测方面遇到的障碍,并概述了未来的发展方向,从而为数字语言在这一领域的巨大潜力提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信