{"title":"Reef location and season, but not recruitment substrate contour and composition, affect coral recruitment patterns","authors":"Dexter W. dela Cruz , Peter L. Harrison","doi":"10.1016/j.jembe.2024.152029","DOIUrl":null,"url":null,"abstract":"<div><p>Most studies have quantified coral recruitment using recruitment tiles temporarily deployed on reefs. However, the wide range of tile types used in different studies potentially influences recruitment patterns thereby hindering accurate comparisons among reef areas. We examined the effect of different tile types with different surface structure and composition on spatial (reef locations) and temporal (season) patterns of coral recruitment in the northwestern Philippines. Dead coral skeleton, terracotta, and fibre-cement tiles were deployed and retrieved quarterly over a 15-month period. In contrast to previous studies, patterns of standardized density and composition of recruits were consistent among tile types. Recruits varied spatially and were highest in Caniogan reef, followed by Cory reef and Lucero reef, suggesting that coral recruitment in the Bolinao-Anda Reef Complex (BARC) is influenced by reef location and existing coral cover. Highest recruitment was also found during the peak coral spawning season. The results of this study contrast with some previous reports which indicate that coral recruitment patterns are strongly influenced by recruitment substrate types. Our study suggests that once sufficient biological conditioning of the tile surfaces has occurred, the microbial and algal community present on the different tile surfaces are similarly conducive to larval settlement of some coral taxa.</p></div>","PeriodicalId":50197,"journal":{"name":"Journal of Experimental Marine Biology and Ecology","volume":"578 ","pages":"Article 152029"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022098124000443/pdfft?md5=57e009fb856269020d4c7d79b9dce97c&pid=1-s2.0-S0022098124000443-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Marine Biology and Ecology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022098124000443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most studies have quantified coral recruitment using recruitment tiles temporarily deployed on reefs. However, the wide range of tile types used in different studies potentially influences recruitment patterns thereby hindering accurate comparisons among reef areas. We examined the effect of different tile types with different surface structure and composition on spatial (reef locations) and temporal (season) patterns of coral recruitment in the northwestern Philippines. Dead coral skeleton, terracotta, and fibre-cement tiles were deployed and retrieved quarterly over a 15-month period. In contrast to previous studies, patterns of standardized density and composition of recruits were consistent among tile types. Recruits varied spatially and were highest in Caniogan reef, followed by Cory reef and Lucero reef, suggesting that coral recruitment in the Bolinao-Anda Reef Complex (BARC) is influenced by reef location and existing coral cover. Highest recruitment was also found during the peak coral spawning season. The results of this study contrast with some previous reports which indicate that coral recruitment patterns are strongly influenced by recruitment substrate types. Our study suggests that once sufficient biological conditioning of the tile surfaces has occurred, the microbial and algal community present on the different tile surfaces are similarly conducive to larval settlement of some coral taxa.
期刊介绍:
The Journal of Experimental Marine Biology and Ecology provides a forum for experimental ecological research on marine organisms in relation to their environment. Topic areas include studies that focus on biochemistry, physiology, behavior, genetics, and ecological theory. The main emphasis of the Journal lies in hypothesis driven experimental work, both from the laboratory and the field. Natural experiments or descriptive studies that elucidate fundamental ecological processes are welcome. Submissions should have a broad ecological framework beyond the specific study organism or geographic region.
Short communications that highlight emerging issues and exciting discoveries within five printed pages will receive a rapid turnaround. Papers describing important new analytical, computational, experimental and theoretical techniques and methods are encouraged and will be highlighted as Methodological Advances. We welcome proposals for Review Papers synthesizing a specific field within marine ecology. Finally, the journal aims to publish Special Issues at regular intervals synthesizing a particular field of marine science. All printed papers undergo a peer review process before being accepted and will receive a first decision within three months.