Yuanxia Zheng , Yi Zhang , Xuegang Li , Liangwei Liu
{"title":"Proof of ssDNA degraded from dsDNA for ET recombination","authors":"Yuanxia Zheng , Yi Zhang , Xuegang Li , Liangwei Liu","doi":"10.1016/j.bbrep.2024.101750","DOIUrl":null,"url":null,"abstract":"<div><p>The widely used ET recombination requires an ssDNA product degraded by Rac phage protein E588 from dsDNA for strand invasion. However, proof of the ssDNA product is still elusive. The study provided three levels of proof sequentially. The probable ssDNAs degraded by E588 from the fluorescent plus-, minus-, or double-stranded dsDNA pET28a-xylanase exhibited a half fluorescence intensity of the corresponding dsDNAs, equivalent to the E588 degradation nucleotides half that of the total nucleotides degraded from the corresponding dsDNA. The ssDNA product degraded by E588 from the fluorescent minus-stranded dsDNA was confirmed by gradient gel-electrophoresis and two nuclease degradation reactions. Degraded by E588 from the dsDNA pET28a-xylanase that had a phosphorothioated plus-stranded 5′-terminus, the plus-stranded ssDNA product was separated via gel electrophoresis and recovered via a DNAclean kit. The recovered ssDNA product was proven to have intact 5′- and 3′-ends by DNA sequencing analysis. This study provides a solid foundation for the mechanism of ssDNA invasion.</p></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405580824001146/pdfft?md5=e12edba587563f22a95b54dc75132163&pid=1-s2.0-S2405580824001146-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824001146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The widely used ET recombination requires an ssDNA product degraded by Rac phage protein E588 from dsDNA for strand invasion. However, proof of the ssDNA product is still elusive. The study provided three levels of proof sequentially. The probable ssDNAs degraded by E588 from the fluorescent plus-, minus-, or double-stranded dsDNA pET28a-xylanase exhibited a half fluorescence intensity of the corresponding dsDNAs, equivalent to the E588 degradation nucleotides half that of the total nucleotides degraded from the corresponding dsDNA. The ssDNA product degraded by E588 from the fluorescent minus-stranded dsDNA was confirmed by gradient gel-electrophoresis and two nuclease degradation reactions. Degraded by E588 from the dsDNA pET28a-xylanase that had a phosphorothioated plus-stranded 5′-terminus, the plus-stranded ssDNA product was separated via gel electrophoresis and recovered via a DNAclean kit. The recovered ssDNA product was proven to have intact 5′- and 3′-ends by DNA sequencing analysis. This study provides a solid foundation for the mechanism of ssDNA invasion.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.