{"title":"On the use of senders for asymmetric tuples of cliques in Ramsey theory","authors":"Simona Boyadzhiyska , Thomas Lesgourgues","doi":"10.1016/j.jctb.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is <em>q-Ramsey</em> for a <em>q</em>-tuple of graphs <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> if for every <em>q</em>-coloring of the edges of <em>G</em> there exists a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in color <em>i</em> for some <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>q</mi><mo>]</mo></math></span>. Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are <em>q</em>-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000455/pdfft?md5=2b7bd0f20408d42167594cf123d9f0c1&pid=1-s2.0-S0095895624000455-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A graph G is q-Ramsey for a q-tuple of graphs if for every q-coloring of the edges of G there exists a monochromatic copy of in color i for some . Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are q-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.