Electrical Capacitance Tomography of Cell Cultures on a CMOS Microelectrode Array

Manar Abdelatty;Joseph Incandela;Kangping Hu;Pushkaraj Joshi;Joseph W. Larkin;Sherief Reda;Jacob K. Rosenstein
{"title":"Electrical Capacitance Tomography of Cell Cultures on a CMOS Microelectrode Array","authors":"Manar Abdelatty;Joseph Incandela;Kangping Hu;Pushkaraj Joshi;Joseph W. Larkin;Sherief Reda;Jacob K. Rosenstein","doi":"10.1109/TBCAS.2024.3415360","DOIUrl":null,"url":null,"abstract":"Electrical capacitance tomography (ECT) can be used to predict information about the interior volume of an object based on measured capacitance at its boundaries. Here, we present a microscale capacitance tomography system with a spatial resolution of 10 microns using an active CMOS microelectrode array. We introduce a deep learning model for reconstructing 3-D volumes of cell cultures using the boundary capacitance measurements acquired from the sensor array, which is trained using a multi-objective loss function that combines a pixel-wise loss function, a distribution-based loss function, and a region-based loss function to improve model's reconstruction accuracy. The multi-objective loss function enhances the model's reconstruction accuracy by 3.2% compared to training only with a pixel-wise loss function. Compared to baseline computational methods, our model achieves an average of 4.6% improvement on the datasets evaluated. We demonstrate our approach on experimental datasets of bacterial biofilms, showcasing the system's ability to resolve microscopic spatial features of cell cultures in three dimensions. Microscale capacitance tomography can be a low-cost, low-power, label-free tool for 3-D imaging of biological samples.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10559749/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical capacitance tomography (ECT) can be used to predict information about the interior volume of an object based on measured capacitance at its boundaries. Here, we present a microscale capacitance tomography system with a spatial resolution of 10 microns using an active CMOS microelectrode array. We introduce a deep learning model for reconstructing 3-D volumes of cell cultures using the boundary capacitance measurements acquired from the sensor array, which is trained using a multi-objective loss function that combines a pixel-wise loss function, a distribution-based loss function, and a region-based loss function to improve model's reconstruction accuracy. The multi-objective loss function enhances the model's reconstruction accuracy by 3.2% compared to training only with a pixel-wise loss function. Compared to baseline computational methods, our model achieves an average of 4.6% improvement on the datasets evaluated. We demonstrate our approach on experimental datasets of bacterial biofilms, showcasing the system's ability to resolve microscopic spatial features of cell cultures in three dimensions. Microscale capacitance tomography can be a low-cost, low-power, label-free tool for 3-D imaging of biological samples.
CMOS 微电极阵列上的细胞培养电容层析成像。
电容断层成像(ECT)可用于根据物体边界的电容测量值预测物体内部的体积信息。在这里,我们利用有源 CMOS 微电极阵列展示了一种空间分辨率为 10 微米的微尺度电容层析成像系统。我们引入了一种深度学习模型,用于利用从传感器阵列获取的边界电容测量值重建细胞培养物的三维体积。该模型采用多目标损失函数进行训练,结合了像素损失函数、基于分布的损失函数和基于区域的损失函数,以提高模型的重建精度。与仅使用像素损失函数训练相比,多目标损失函数将模型的重建精度提高了 3.2%。与基线计算方法相比,我们的模型在评估的数据集上平均提高了 4.6%。我们在细菌生物膜的实验数据集上演示了我们的方法,展示了该系统解析三维细胞培养物微观空间特征的能力。微尺度电容层析成像技术是一种低成本、低功耗、无标记的生物样本三维成像工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信