{"title":"The effect of non-immersive virtual reality radiographic positioning simulation on first-year radiography students’ image evaluation performance","authors":"E.M. Miller , K.K. Schmid , B.M. Abbey","doi":"10.1016/j.radi.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Optimal radiographic image quality is critical because it affects the accuracy of the reporter's interpretation. Radiographers have an ethical obligation to obtain quality diagnostic images while protecting patients from unnecessary radiation, including minimizing rejected and repeated images. Repeated imaging due to positioning errors have increased in recent years.</p></div><div><h3>Methods</h3><p>This study evaluated the effectiveness of non-immersive virtual reality (VR) simulation on first-year students' evaluation of positioning errors on resultant knee and lumbar spine images. Crossover intervention design was used to deliver radiographic image evaluation instruction through traditional lecture and guided simulation using non-immersive VR to 33 first-year radiography students at a single academic institution located across four geographic program locations. Pre- and post-test knowledge assessments examined participants’ ability to recognize positioning errors on multiple-choice and essay questions.</p></div><div><h3>Results</h3><p>Raw mean scores increased on multiple choice questions across the entire cohort for the knee (M = 0.82, SD = 3.38) and lumbar spine (M = 2.91, SD = 3.69) but there was no significant difference in performance by instructional method (p = 0.60). Essay questions reported very minimal to no raw mean score increases for the knee (M = 0.27, SD = 2.78) and lumbar spine (M = 0.00, SD = 2.55), with no significant difference in performance by instructional method (p = 0.72).</p></div><div><h3>Conclusion</h3><p>Guided simulation instruction was shown to be as effective as traditional lecture. Results also suggest that novice learners better recognize image evaluation errors and corrections from a list of options but have not yet achieved the level of competence needed to independently evaluate radiographic images for diagnostic criteria.</p></div><div><h3>Implications for practice</h3><p>Non-immersive VR simulation is an effective tool for image evaluation instruction. VR increases access to authentic image evaluation practice by providing a simulated resultant image based off the students’ applied positioning skills.</p></div>","PeriodicalId":47416,"journal":{"name":"Radiography","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1078817424001421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Optimal radiographic image quality is critical because it affects the accuracy of the reporter's interpretation. Radiographers have an ethical obligation to obtain quality diagnostic images while protecting patients from unnecessary radiation, including minimizing rejected and repeated images. Repeated imaging due to positioning errors have increased in recent years.
Methods
This study evaluated the effectiveness of non-immersive virtual reality (VR) simulation on first-year students' evaluation of positioning errors on resultant knee and lumbar spine images. Crossover intervention design was used to deliver radiographic image evaluation instruction through traditional lecture and guided simulation using non-immersive VR to 33 first-year radiography students at a single academic institution located across four geographic program locations. Pre- and post-test knowledge assessments examined participants’ ability to recognize positioning errors on multiple-choice and essay questions.
Results
Raw mean scores increased on multiple choice questions across the entire cohort for the knee (M = 0.82, SD = 3.38) and lumbar spine (M = 2.91, SD = 3.69) but there was no significant difference in performance by instructional method (p = 0.60). Essay questions reported very minimal to no raw mean score increases for the knee (M = 0.27, SD = 2.78) and lumbar spine (M = 0.00, SD = 2.55), with no significant difference in performance by instructional method (p = 0.72).
Conclusion
Guided simulation instruction was shown to be as effective as traditional lecture. Results also suggest that novice learners better recognize image evaluation errors and corrections from a list of options but have not yet achieved the level of competence needed to independently evaluate radiographic images for diagnostic criteria.
Implications for practice
Non-immersive VR simulation is an effective tool for image evaluation instruction. VR increases access to authentic image evaluation practice by providing a simulated resultant image based off the students’ applied positioning skills.
RadiographyRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.70
自引率
34.60%
发文量
169
审稿时长
63 days
期刊介绍:
Radiography is an International, English language, peer-reviewed journal of diagnostic imaging and radiation therapy. Radiography is the official professional journal of the College of Radiographers and is published quarterly. Radiography aims to publish the highest quality material, both clinical and scientific, on all aspects of diagnostic imaging and radiation therapy and oncology.