A novel protocol for three-dimensional mapping of sand tiger shark (Carcharias taurus) enclosure use in aquaria: Implications for management.

IF 1.2 4区 生物学 Q3 VETERINARY SCIENCES
Zoo Biology Pub Date : 2024-07-01 Epub Date: 2024-06-18 DOI:10.1002/zoo.21844
Lara C Metrione, Nancy Kim Pham, Carol Price, Libbie Duskin, Andy M Stamper, Linda M Penfold
{"title":"A novel protocol for three-dimensional mapping of sand tiger shark (Carcharias taurus) enclosure use in aquaria: Implications for management.","authors":"Lara C Metrione, Nancy Kim Pham, Carol Price, Libbie Duskin, Andy M Stamper, Linda M Penfold","doi":"10.1002/zoo.21844","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated sand tiger shark (STS; Carcharias taurus) spatial use and exclusion in public aquarium enclosures using a novel protocol for three-dimensional mapping. Fifty-one STS were observed in 14 enclosures, and swimming pattern, depth, and location were recorded in ZooMonitor. Data were converted into quantitative, three-dimensional representations using ArcGIS® Pro v. 2.9. All observed STS except one swam in circular patterns, and 80% (n = 41) showed a directional swimming bias. Most STS (80%; n = 41) predominantly utilized the top two-thirds of the enclosures, though 83% (n = 34) of those had swimming obstructions in the bottom of the enclosure. Avoidance of obstructed areas, sections <7 m wide, as well as behavioral spatial separation, resulted in utilization of between 27% and 66% of available enclosure space. STS underutilized corners, pinch-points, and obstructed areas requiring abrupt directional changes and instead exhibited continual, unimpeded swimming patterns. In addition, this study found no relationship between directional swimming bias or use of smaller enclosure volumes and spinal deformity, a health issue affecting 26% of STS 10 years ago but now with an incidence of 6%. Using novel protocols for three-dimensional mapping and volume estimation, this study demonstrated that enclosures facilitating unimpeded, continuous swimming are most usable for STS and provides important information that will be useful for future enclosure design.</p>","PeriodicalId":24035,"journal":{"name":"Zoo Biology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoo Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/zoo.21844","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated sand tiger shark (STS; Carcharias taurus) spatial use and exclusion in public aquarium enclosures using a novel protocol for three-dimensional mapping. Fifty-one STS were observed in 14 enclosures, and swimming pattern, depth, and location were recorded in ZooMonitor. Data were converted into quantitative, three-dimensional representations using ArcGIS® Pro v. 2.9. All observed STS except one swam in circular patterns, and 80% (n = 41) showed a directional swimming bias. Most STS (80%; n = 41) predominantly utilized the top two-thirds of the enclosures, though 83% (n = 34) of those had swimming obstructions in the bottom of the enclosure. Avoidance of obstructed areas, sections <7 m wide, as well as behavioral spatial separation, resulted in utilization of between 27% and 66% of available enclosure space. STS underutilized corners, pinch-points, and obstructed areas requiring abrupt directional changes and instead exhibited continual, unimpeded swimming patterns. In addition, this study found no relationship between directional swimming bias or use of smaller enclosure volumes and spinal deformity, a health issue affecting 26% of STS 10 years ago but now with an incidence of 6%. Using novel protocols for three-dimensional mapping and volume estimation, this study demonstrated that enclosures facilitating unimpeded, continuous swimming are most usable for STS and provides important information that will be useful for future enclosure design.

水族馆中沙虎鲨(Carcharias taurus)围栏三维绘图新方案:对管理的影响。
本研究采用新颖的三维绘图方案,调查了沙虎鲨(STS;Carcharias taurus)在公共水族馆围栏中的空间使用和排斥情况。在 14 个围栏中观察了 51 条沙虎鲨,并在 ZooMonitor 中记录了它们的游动模式、深度和位置。使用 ArcGIS® Pro v. 2.9 将数据转换为定量的三维表示。除一只 STS 外,所有观察到的 STS 都呈环状游动,80%(n = 41)的 STS 有定向游动的倾向。大多数 STS(80%;n = 41)主要利用围栏顶部的三分之二,但其中 83%(n = 34)的围栏底部有游泳障碍物。避开障碍物区域、区域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoo Biology
Zoo Biology 生物-动物学
CiteScore
2.50
自引率
15.40%
发文量
85
审稿时长
6-12 weeks
期刊介绍: Zoo Biology is concerned with reproduction, demographics, genetics, behavior, medicine, husbandry, nutrition, conservation and all empirical aspects of the exhibition and maintenance of wild animals in wildlife parks, zoos, and aquariums. This diverse journal offers a forum for effectively communicating scientific findings, original ideas, and critical thinking related to the role of wildlife collections and their unique contribution to conservation.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信