Post-translational Regulation of BRI1-EMS Suppressor 1 and Brassinazole-resistant 1.

IF 3.9 2区 生物学 Q2 CELL BIOLOGY
Juan Mao, Biaodi Shen, Wenxin Li, Linchuan Liu, Jianming Li
{"title":"Post-translational Regulation of BRI1-EMS Suppressor 1 and Brassinazole-resistant 1.","authors":"Juan Mao, Biaodi Shen, Wenxin Li, Linchuan Liu, Jianming Li","doi":"10.1093/pcp/pcae066","DOIUrl":null,"url":null,"abstract":"<p><p>BRI1-EMS Suppressor 1 (BES1) and Brassinazole resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulate a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs), and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation, oxidation/reduction, in regulating the subcellular localization, protein stability, and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1-interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRI1-EMS Suppressor 1 (BES1) and Brassinazole resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulate a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs), and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation, oxidation/reduction, in regulating the subcellular localization, protein stability, and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1-interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.

BRI1-EMS 抑制因子 1 和抗黄铜唑因子 1 的翻译后调控。
BRI1-EMS 抑制因子 1(BES1)和抗芸苔素唑因子 1(BZR1)是芸苔素类固醇(BR)信号通路中两个高度相似的主转录因子,它们调控多种植物生长和发育过程以及胁迫响应。先前的遗传和生化分析建立了一个复杂的调控网络来控制这两个转录因子。该网络包括与其他转录因子和相互作用因子的协调、多种翻译后修饰(PTM)以及不同的亚细胞定位。在这篇综述中,我们系统地详细介绍了磷酸化/去磷酸化、泛素化/去泛素化、SUMOylation/deSUMOylation、氧化/还原等各种 PTM 在调控 BES1/BZR1 亚细胞定位、蛋白质稳定性和转录活性方面的功能和调控机制。我们还讨论了目前有关介导 BES1 和 BZR1 在核细胞质中动态穿梭的 BES1/BZR1 相互作用体的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信