Vitor Pocani da Rocha, Barbara Sampaio Dias Martins Mansano, Carolina Fernanda Chaves Dos Santos, Ighor Luiz Azevedo Teixeira, Helenita Antonia de Oliveira, Stella Sousa Vieira, Ednei Luiz Antonio, Maria Cristina de Oliveira Izar, Francisco Antonio Helfenstein Fonseca, Andrey Jorge Serra
{"title":"How long does the biological effect of a red light-emitting diode last on adipose-derived mesenchymal stem cells?","authors":"Vitor Pocani da Rocha, Barbara Sampaio Dias Martins Mansano, Carolina Fernanda Chaves Dos Santos, Ighor Luiz Azevedo Teixeira, Helenita Antonia de Oliveira, Stella Sousa Vieira, Ednei Luiz Antonio, Maria Cristina de Oliveira Izar, Francisco Antonio Helfenstein Fonseca, Andrey Jorge Serra","doi":"10.1111/php.13983","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigated the duration of the influence of red light-emitting diodes (LED, 630 nm; output power: 2452.5 mW; laser beam: 163.5 cm<sup>2</sup>; irradiance: 15 mW/cm<sup>2</sup>; radiant exposure: 4 J/cm<sup>2</sup>) on different periods after irradiation (6, 12, 24, 48, and 72 h) on adipose-derived mesenchymal stem cells' (AdMSCs) metabolism and paracrine factors. AdMSCs were irradiated three times every 48 h. Twenty-four hours after the last irradiation, there was a higher MTT absorbance, followed by a decrease after 48 h. The cells' secretome showed increased levels of IL-6 and VEGF after 12 and 24 h, but this was reversed after 48 h. Additionally, LED irradiation resulted in higher levels of nitrite and did not affect oxidative stress markers. LED irradiation had significant effects on AdMSCs after 24 h compared to other groups and its control group.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"206-214"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.13983","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigated the duration of the influence of red light-emitting diodes (LED, 630 nm; output power: 2452.5 mW; laser beam: 163.5 cm2; irradiance: 15 mW/cm2; radiant exposure: 4 J/cm2) on different periods after irradiation (6, 12, 24, 48, and 72 h) on adipose-derived mesenchymal stem cells' (AdMSCs) metabolism and paracrine factors. AdMSCs were irradiated three times every 48 h. Twenty-four hours after the last irradiation, there was a higher MTT absorbance, followed by a decrease after 48 h. The cells' secretome showed increased levels of IL-6 and VEGF after 12 and 24 h, but this was reversed after 48 h. Additionally, LED irradiation resulted in higher levels of nitrite and did not affect oxidative stress markers. LED irradiation had significant effects on AdMSCs after 24 h compared to other groups and its control group.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.