{"title":"Exploring the Significance of Somaclonal Variations in Horticultural Crops.","authors":"Pooja Manchanda, Deepansh Sharma, Gurpreet Kaur, Harleen Kaur, Vanshika","doi":"10.1007/s12033-024-01214-6","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic and epigenetic variations produced via cell and tissue culture open up new sources of variability intra-species which can be used to improve crops. The use of in vitro generated somaclonal variations for selecting novel variants aids in the development of novel genotypes having desirable agronomic traits that can be released as varieties or utilized for breeding purposes. Horticultural crops give higher yield and productivity per unit area than other crops, as well as provide good economic returns which have led to an increase in their potential benefits throughout time. The last three to four decades have seen the selection and release of a number of valuable somaclonal variants, many of which possess remarkable features including disease resistance, high yield, improved nutritional quality and abiotic stress tolerance. Generating somaclonal variations has given breeders a novel alternative option for obtaining genetic diversity in horticultural crops and without advanced technologies. The variations introduced through tissue culture process, methods to determine and validate genetic changes in vitro regenerated plantlets, along with prospective application of such variations in horticultural crops' improvement are reviewed in the present work.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2185-2203"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01214-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic and epigenetic variations produced via cell and tissue culture open up new sources of variability intra-species which can be used to improve crops. The use of in vitro generated somaclonal variations for selecting novel variants aids in the development of novel genotypes having desirable agronomic traits that can be released as varieties or utilized for breeding purposes. Horticultural crops give higher yield and productivity per unit area than other crops, as well as provide good economic returns which have led to an increase in their potential benefits throughout time. The last three to four decades have seen the selection and release of a number of valuable somaclonal variants, many of which possess remarkable features including disease resistance, high yield, improved nutritional quality and abiotic stress tolerance. Generating somaclonal variations has given breeders a novel alternative option for obtaining genetic diversity in horticultural crops and without advanced technologies. The variations introduced through tissue culture process, methods to determine and validate genetic changes in vitro regenerated plantlets, along with prospective application of such variations in horticultural crops' improvement are reviewed in the present work.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.