Yogita P Patil, Shyam K Gawari, Vitthal T Barvkar, Rakesh S Joshi
{"title":"Tyramine-Mediated Hyperactivity Modulates the Dietary Habits in Helicoverpa armigera.","authors":"Yogita P Patil, Shyam K Gawari, Vitthal T Barvkar, Rakesh S Joshi","doi":"10.1007/s10886-024-01515-9","DOIUrl":null,"url":null,"abstract":"<p><p>Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01515-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.
Helicoverpa armigera 的取食习性和食物选择具有广泛的变异性。H.armigera取食行为的神经元调控主要受生物胺(如酪胺(TA)和辛胺(OA))的影响。目前还没有研究 H. armigera 在 TA 或 OA 存在的情况下对食物挑战的分子反应。本研究剖析了在非宿主营养胁迫下,OA 和 TA 对 H. armigera 摄食选择和行为的影响。据观察,在通过人工饮食(AD)外源摄入 OA 和 TA 的情况下,摄食行为保持不变。摄入较高浓度的 OA 或 TA 会导致死亡率上升。将 OA 和 TA 与宿主和非宿主食物结合处理,可诱导摄食和向食物移动,尤其是在 TA 处理的情况下。标记物、类原激肽和速激肽相关受体样转录本的表达增加,进一步评估了运动活动的增加。与其他条件相比,接受非寄主饮食并经TA处理的昆虫表现出摄食量增加以及摄食指示剂神经肽F受体和摄食调节剂磺胺激肽的过度表达。在喂食非寄主饲料和 OA 或 TA 的情况下,昆虫的感觉和生物胺合成基因表达升高。代谢组学分析表明,在喂食含有 TA 的非寄主食物的昆虫中,摄食行为诱导剂多巴胺的浓度降低。这项研究强调了在饮食应激过程中生物胺功能之间复杂的相互作用,并提出了酪胺在应激条件下促进摄食的作用。