{"title":"Chitosan-graphene quantum dot-based molecular imprinted polymer for oxaliplatin release.","authors":"Fahimeh Farshi Azhar, Maryam Ahmadi, Leila Khoshmaram","doi":"10.1080/09205063.2024.2366645","DOIUrl":null,"url":null,"abstract":"<p><p>Molecularly imprinted polymers (MIPs) have garnered the interest of researchers in the drug delivery due to their advantages, such as exceptional durability, stability, and selectivity. In this study, a biocompatible MIP drug adsorption and delivery system with high loading capacity and controlled release, was prepared based on chitosan (CS) and graphene quantum dots (GQDs) as the matrix, and the anticancer drug oxaliplatin (OXAL) as the template. Additionally, samples without the drug (non-imprinted polymers, NIPs) were created for comparison. GQDs were produced using the hydrothermal method, and samples underwent characterization through FTIR, XRD, FESEM, and TGA. Various experiments were conducted to determine the optimal pH for drug adsorption, along with kinetic and isotherm studies, selectivity assessments, <i>in vitro</i> drug release and kinetic evaluations. The highest drug binding capacity was observed at pH 6.5. The results indicated the Lagergren-first-order kinetic model (with rate constant of 0.038 min<sup>-1</sup>) and the Langmuir isotherm (with maximum adsorption capacity of 17.15 mg g<sup>-1</sup>) exhibited better alignment with the experimental data. The developed MIPs displayed significant selectivity towards OXAL, by an imprinting factor of 2.88, in comparison to two similar drugs (cisplatin and carboplatin). Furthermore, the analysis of the drug release profile showed a burst release for CS-Drug (87% within 3 h) at pH 7.4, where the release from the CS-GQD-Drug did not occur at pH 7.4 and 10; instead, the release was observed at pH 1.2 in a controlled manner (100% within 28 h). Consequently, this specific OXAL adsorption and delivery system holds promise for cancer treatment.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2115-2136"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2366645","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecularly imprinted polymers (MIPs) have garnered the interest of researchers in the drug delivery due to their advantages, such as exceptional durability, stability, and selectivity. In this study, a biocompatible MIP drug adsorption and delivery system with high loading capacity and controlled release, was prepared based on chitosan (CS) and graphene quantum dots (GQDs) as the matrix, and the anticancer drug oxaliplatin (OXAL) as the template. Additionally, samples without the drug (non-imprinted polymers, NIPs) were created for comparison. GQDs were produced using the hydrothermal method, and samples underwent characterization through FTIR, XRD, FESEM, and TGA. Various experiments were conducted to determine the optimal pH for drug adsorption, along with kinetic and isotherm studies, selectivity assessments, in vitro drug release and kinetic evaluations. The highest drug binding capacity was observed at pH 6.5. The results indicated the Lagergren-first-order kinetic model (with rate constant of 0.038 min-1) and the Langmuir isotherm (with maximum adsorption capacity of 17.15 mg g-1) exhibited better alignment with the experimental data. The developed MIPs displayed significant selectivity towards OXAL, by an imprinting factor of 2.88, in comparison to two similar drugs (cisplatin and carboplatin). Furthermore, the analysis of the drug release profile showed a burst release for CS-Drug (87% within 3 h) at pH 7.4, where the release from the CS-GQD-Drug did not occur at pH 7.4 and 10; instead, the release was observed at pH 1.2 in a controlled manner (100% within 28 h). Consequently, this specific OXAL adsorption and delivery system holds promise for cancer treatment.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.