Predicting prostate cancer grade reclassification on active surveillance using a deep learning-based grading algorithm.

IF 9.9 1区 医学 Q1 ONCOLOGY
Chien-Kuang C Ding, Zhuo Tony Su, Erik Erak, Lia De Paula Oliveira, Daniela C Salles, Yuezhou Jing, Pranab Samanta, Saikiran Bonthu, Uttara Joshi, Chaith Kondragunta, Nitin Singhal, Angelo M De Marzo, Bruce J Trock, Christian P Pavlovich, Claire M de la Calle, Tamara L Lotan
{"title":"Predicting prostate cancer grade reclassification on active surveillance using a deep learning-based grading algorithm.","authors":"Chien-Kuang C Ding, Zhuo Tony Su, Erik Erak, Lia De Paula Oliveira, Daniela C Salles, Yuezhou Jing, Pranab Samanta, Saikiran Bonthu, Uttara Joshi, Chaith Kondragunta, Nitin Singhal, Angelo M De Marzo, Bruce J Trock, Christian P Pavlovich, Claire M de la Calle, Tamara L Lotan","doi":"10.1093/jnci/djae139","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL)-based algorithms to determine prostate cancer (PCa) Grade Group (GG) on biopsy slides have not been validated by comparison to clinical outcomes. We used a DL-based algorithm, AIRAProstate, to regrade initial prostate biopsies in 2 independent PCa active surveillance (AS) cohorts. In a cohort initially diagnosed with GG1 PCa using only systematic biopsies (n = 138), upgrading of the initial biopsy to ≥GG2 by AIRAProstate was associated with rapid or extreme grade reclassification on AS (odds ratio = 3.3, P = .04), whereas upgrading of the initial biopsy by contemporary uropathologist reviews was not associated with this outcome. In a contemporary validation cohort that underwent prostate magnetic resonance imaging before initial biopsy (n = 169), upgrading of the initial biopsy (all contemporary GG1 by uropathologist grading) by AIRAProstate was associated with grade reclassification on AS (hazard ratio = 1.7, P = .03). These results demonstrate the utility of a DL-based grading algorithm in PCa risk stratification for AS.</p>","PeriodicalId":14809,"journal":{"name":"JNCI Journal of the National Cancer Institute","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Journal of the National Cancer Institute","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnci/djae139","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL)-based algorithms to determine prostate cancer (PCa) Grade Group (GG) on biopsy slides have not been validated by comparison to clinical outcomes. We used a DL-based algorithm, AIRAProstate, to regrade initial prostate biopsies in 2 independent PCa active surveillance (AS) cohorts. In a cohort initially diagnosed with GG1 PCa using only systematic biopsies (n = 138), upgrading of the initial biopsy to ≥GG2 by AIRAProstate was associated with rapid or extreme grade reclassification on AS (odds ratio = 3.3, P = .04), whereas upgrading of the initial biopsy by contemporary uropathologist reviews was not associated with this outcome. In a contemporary validation cohort that underwent prostate magnetic resonance imaging before initial biopsy (n = 169), upgrading of the initial biopsy (all contemporary GG1 by uropathologist grading) by AIRAProstate was associated with grade reclassification on AS (hazard ratio = 1.7, P = .03). These results demonstrate the utility of a DL-based grading algorithm in PCa risk stratification for AS.

使用基于深度学习的分级算法预测前列腺癌主动监测的分级再分类。
基于深度学习(DL)的算法可确定活检切片上的前列腺癌(PCa)分级组(GG),但该算法尚未与临床结果进行比较验证。我们使用基于 DL 的算法 AIRAProstate 对两个独立的 PCa 主动监测(AS)队列中的初始前列腺活检进行了重新分级。在一个仅使用系统活检初步诊断为 GG1 PCa 的队列(n = 138)中,AIRAProstate 将初步活检升级为≥GG2 与 AS 的快速或极端分级重新分类有关(几率比 3.3,p = .04),而通过当代泌尿病理学家审查将初步活检升级与这一结果无关。在首次活检前接受前列腺磁共振成像的当代验证队列(n = 169)中,AIRAProstate对首次活检(所有当代GG1均由泌尿病理学家分级)的升级与AS的分级重新分类有关(危险比为1.7,p = .03)。这些结果证明了基于 DL 的分级算法在 PCa AS 风险分层中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.00
自引率
2.90%
发文量
203
审稿时长
4-8 weeks
期刊介绍: The Journal of the National Cancer Institute is a reputable publication that undergoes a peer-review process. It is available in both print (ISSN: 0027-8874) and online (ISSN: 1460-2105) formats, with 12 issues released annually. The journal's primary aim is to disseminate innovative and important discoveries in the field of cancer research, with specific emphasis on clinical, epidemiologic, behavioral, and health outcomes studies. Authors are encouraged to submit reviews, minireviews, and commentaries. The journal ensures that submitted manuscripts undergo a rigorous and expedited review to publish scientifically and medically significant findings in a timely manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信