Ling Cui, Yao Hu, Xin-Xin Li, Xue Ma, Mu Cheng, Shun Tan, Jing Hou, Heng-Lin Cui
{"title":"Halobacterium yunchengense sp. nov., Natronomonas amylolytica sp. nov., Halorientalis halophila sp. nov., Halobellus salinisoli sp. nov., halophilic archaea isolated from a saline lake and inland saline soil.","authors":"Ling Cui, Yao Hu, Xin-Xin Li, Xue Ma, Mu Cheng, Shun Tan, Jing Hou, Heng-Lin Cui","doi":"10.1007/s00792-024-01347-1","DOIUrl":null,"url":null,"abstract":"<p><p>Four halophilic archaeal strains YCN1<sup>T</sup>, YCN58<sup>T</sup>, LT38<sup>T</sup>, and LT62<sup>T</sup> were isolated from Yuncheng Salt Lake (Shanxi, China) and Tarim Basin (Xinjiang, China), respectively. Phylogenetic and phylogenomic analyses showed that these four strains tightly cluster with related species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The AAI, ANI, and dDDH values between these four strains and their related species of respective genera were lower than the proposed threshold values for species delineation. Strains YCN1<sup>T</sup>, YCN58<sup>T</sup>, LT38<sup>T</sup>, and LT62<sup>T</sup> could be differentiated from the current species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively, based on the comparison of diverse phenotypic characteristics. The polar lipid profiles of these four strains were closely similar to those of respective relatives within the genera Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The phenotypic, phylogenetic, and genome-based analyses indicated that strains YCN1<sup>T</sup>, YCN58<sup>T</sup>, LT38<sup>T</sup>, and LT62<sup>T</sup> represent respective novel species within the genera Halobacterium, Natronomonas, Halorentalis, and Halobellus, for which the names Halobacterium yunchengense sp. nov., Natronomonas amylolytica sp. nov., Halorientalis halophila sp. nov., and Halobellus salinisoli sp. nov. are proposed, respectively.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"28 2","pages":"28"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01347-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Four halophilic archaeal strains YCN1T, YCN58T, LT38T, and LT62T were isolated from Yuncheng Salt Lake (Shanxi, China) and Tarim Basin (Xinjiang, China), respectively. Phylogenetic and phylogenomic analyses showed that these four strains tightly cluster with related species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The AAI, ANI, and dDDH values between these four strains and their related species of respective genera were lower than the proposed threshold values for species delineation. Strains YCN1T, YCN58T, LT38T, and LT62T could be differentiated from the current species of Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively, based on the comparison of diverse phenotypic characteristics. The polar lipid profiles of these four strains were closely similar to those of respective relatives within the genera Halobacterium, Natronomonas, Halorientalis, and Halobellus, respectively. The phenotypic, phylogenetic, and genome-based analyses indicated that strains YCN1T, YCN58T, LT38T, and LT62T represent respective novel species within the genera Halobacterium, Natronomonas, Halorentalis, and Halobellus, for which the names Halobacterium yunchengense sp. nov., Natronomonas amylolytica sp. nov., Halorientalis halophila sp. nov., and Halobellus salinisoli sp. nov. are proposed, respectively.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.