0-1 Laws for Pattern Occurrences in Phylogenetic Trees and Networks.

IF 2 4区 数学 Q2 BIOLOGY
François Bienvenu, Mike Steel
{"title":"0-1 Laws for Pattern Occurrences in Phylogenetic Trees and Networks.","authors":"François Bienvenu, Mike Steel","doi":"10.1007/s11538-024-01316-x","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 8","pages":"94"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11538-024-01316-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.

Abstract Image

系统树和网络中模式出现的 0-1 规律。
在最近的一篇论文中,我们提出了一个问题:如何确定二叉树中包含固定图案(即雪花)的部分。我们证明了这个分数为 1,并提供了两个截然不同的证明:一个是纯粹的组合证明,它是定量的,专门针对这个问题;另一个是使用分支过程技术的证明,它不那么明确,但也更通用,因为它适用于任何固定模式,并可扩展到其他树和网络。特别是,从我们的第二个证明可以立即看出,随着树叶数量的增加,包含固定 dary 树(或 k 级网络)的 dary 树(或 k 级网络)的分数趋向于 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信