Transcriptomic Responses and Larval-Stage Growth of Protandrous Yellowfin Seabream (Acanthopagrus Latus) to Different Polyethylene Microplastics Exposure
IF 2.6 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Meng Xu, Wenyu Fang, Genmei Lin, Xiaoshan Zhu, Jianguo Lu
{"title":"Transcriptomic Responses and Larval-Stage Growth of Protandrous Yellowfin Seabream (Acanthopagrus Latus) to Different Polyethylene Microplastics Exposure","authors":"Meng Xu, Wenyu Fang, Genmei Lin, Xiaoshan Zhu, Jianguo Lu","doi":"10.1007/s10126-024-10334-8","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene microplastics (PE-MPs) were widespread in the marine environment; thus, their influences on marine hermaphroditic fish cannot be ignored. This study intends to evaluate the adverse biological effects of two different sources of PE, identified by Raman spectroscopy, on protandrous yellowfin seabream (<i>Acanthopagrus latus</i>) larvae. Growth retardation, brain lesions, head/body length ratio increase, and neuroendocrine system disorders were found, and growth and neuroendocrine regulation-related genes such as <i>sstr2</i>, <i>ghrb</i>, <i>irs1</i>, UGT2B15, UGT2C1, <i>drd4a</i>, <i>esr2b, hsd3b7</i>, and <i>hsd17b2</i> were identified. PE microbeads (100 μm) showed more severe tissue damage on fish, while environmental PE fibers (500–2500 μm) showed more imperceptible adverse effects. There were 218 DEGs up-regulated and 147 DEGs down-regulated in the environmental PE group, while 1284 (up) and 1267 (down) DEGs were identified in the virgin PE group. PE-MP stress influenced physiological processes like growth and neuroendocrine regulation and cholesterol-steroid metabolism, and caused tissue damage in the fish larvae. The study highlights the effects of environmental PE exposure on hermaphroditic protandrous fish.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 5","pages":"931 - 942"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10334-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylene microplastics (PE-MPs) were widespread in the marine environment; thus, their influences on marine hermaphroditic fish cannot be ignored. This study intends to evaluate the adverse biological effects of two different sources of PE, identified by Raman spectroscopy, on protandrous yellowfin seabream (Acanthopagrus latus) larvae. Growth retardation, brain lesions, head/body length ratio increase, and neuroendocrine system disorders were found, and growth and neuroendocrine regulation-related genes such as sstr2, ghrb, irs1, UGT2B15, UGT2C1, drd4a, esr2b, hsd3b7, and hsd17b2 were identified. PE microbeads (100 μm) showed more severe tissue damage on fish, while environmental PE fibers (500–2500 μm) showed more imperceptible adverse effects. There were 218 DEGs up-regulated and 147 DEGs down-regulated in the environmental PE group, while 1284 (up) and 1267 (down) DEGs were identified in the virgin PE group. PE-MP stress influenced physiological processes like growth and neuroendocrine regulation and cholesterol-steroid metabolism, and caused tissue damage in the fish larvae. The study highlights the effects of environmental PE exposure on hermaphroditic protandrous fish.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.