Eka Oktavia Kurniati , Hang Zeng , Marat I. Latypov , Hee Jeong Kim
{"title":"Machine learning for predicting compressive strength of sustainable cement paste incorporating copper mine tailings as supplementary cementitious materials","authors":"Eka Oktavia Kurniati , Hang Zeng , Marat I. Latypov , Hee Jeong Kim","doi":"10.1016/j.cscm.2024.e03373","DOIUrl":null,"url":null,"abstract":"<div><p>Copper mining produces significant amounts of copper mine tailings (CMT), necessitating appropriate waste handling and disposal practices. By substituting a portion of cement with CMT as supplementary cementitious materials (SCMs), we aim to address two environmental issues simultaneously: reducing copper mine waste in landfills and decreasing embodied carbon by using less cement. The exploration of CMT recycling as a cement replacement requires evaluation of its impact on material performance, such as compressive strength. In this paper, we address this by machine learning that features data fusion of large public data with our own small data on compressive strength of CMT-incorporated cement. We developed and critically evaluated three machine learning models: a simple linear model, Gaussian process, and random forest that predict the compressive strength of CMT-incorporated cement pastes with different mix designs (e.g., varying amounts of CMT and water-binder ratios) and curing ages. Hyperparameters in the random forest model were tuned using Bayesian optimization. Following a comprehensive evaluation of the models, we find that the random forest model can accurately estimate the compressive strength of cement paste across the mix designs. Furthermore, results from SHapley Additive exPlanation (SHAP), Individual Conditional Expectation (ICE), and Partial Dependence Plots (PDP) revealed that cement, ground-granulated blast furnace slag, superplasticizers, and curing ages positively influence compressive strength. This study contributes to acceleration of sustainable material technology to obtain the best mix design and desired compressive strength.</p></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"21 ","pages":"Article e03373"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214509524005242/pdfft?md5=5f4927f3f7cfcc79183ef2975751ed96&pid=1-s2.0-S2214509524005242-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524005242","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper mining produces significant amounts of copper mine tailings (CMT), necessitating appropriate waste handling and disposal practices. By substituting a portion of cement with CMT as supplementary cementitious materials (SCMs), we aim to address two environmental issues simultaneously: reducing copper mine waste in landfills and decreasing embodied carbon by using less cement. The exploration of CMT recycling as a cement replacement requires evaluation of its impact on material performance, such as compressive strength. In this paper, we address this by machine learning that features data fusion of large public data with our own small data on compressive strength of CMT-incorporated cement. We developed and critically evaluated three machine learning models: a simple linear model, Gaussian process, and random forest that predict the compressive strength of CMT-incorporated cement pastes with different mix designs (e.g., varying amounts of CMT and water-binder ratios) and curing ages. Hyperparameters in the random forest model were tuned using Bayesian optimization. Following a comprehensive evaluation of the models, we find that the random forest model can accurately estimate the compressive strength of cement paste across the mix designs. Furthermore, results from SHapley Additive exPlanation (SHAP), Individual Conditional Expectation (ICE), and Partial Dependence Plots (PDP) revealed that cement, ground-granulated blast furnace slag, superplasticizers, and curing ages positively influence compressive strength. This study contributes to acceleration of sustainable material technology to obtain the best mix design and desired compressive strength.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.