Impact load measurement of small multi-bubble explosions near solid wall

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Nyo Me Thet Naing , Seung-Ho Hyun , Rho-Taek Jung
{"title":"Impact load measurement of small multi-bubble explosions near solid wall","authors":"Nyo Me Thet Naing ,&nbsp;Seung-Ho Hyun ,&nbsp;Rho-Taek Jung","doi":"10.1016/j.ijnaoe.2024.100600","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of multiple spark-generated bubbles near solid boundary is investigated experimentally. Qualitative study is done with high-speed imaging for bubble shape evolution and PVDF sensor for impact force measurement. Similar-sized bubbles are created synchronously and distance between bubbles or boundary is chosen to be as small as possible. The jet direction of two horizontally aligned bubbles is strongly influenced by proximity parameter (γ) near boundary. The role of inter bubble distance (η) between bubbles and its contribution to intensity of impulsive force is also presented. It is found that strongest impact is recorded for horizontal pair, compared to vertical pair and diagonal pair, for small η values. Three bubbles are arranged with middle one which is smaller, similar or bigger than left and right bubbles. Allocating bigger bubble in the center indeed produces the most destructive impact on boundary among all cases. Moreover, diverse bubble deformation features are witnessed for various combination of dimensionless parameter applied in this study.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100600"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000190/pdfft?md5=baeb93512cdd1bc14c6d800f3e216b7d&pid=1-s2.0-S2092678224000190-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of multiple spark-generated bubbles near solid boundary is investigated experimentally. Qualitative study is done with high-speed imaging for bubble shape evolution and PVDF sensor for impact force measurement. Similar-sized bubbles are created synchronously and distance between bubbles or boundary is chosen to be as small as possible. The jet direction of two horizontally aligned bubbles is strongly influenced by proximity parameter (γ) near boundary. The role of inter bubble distance (η) between bubbles and its contribution to intensity of impulsive force is also presented. It is found that strongest impact is recorded for horizontal pair, compared to vertical pair and diagonal pair, for small η values. Three bubbles are arranged with middle one which is smaller, similar or bigger than left and right bubbles. Allocating bigger bubble in the center indeed produces the most destructive impact on boundary among all cases. Moreover, diverse bubble deformation features are witnessed for various combination of dimensionless parameter applied in this study.

固体壁附近小型多气泡爆炸的冲击载荷测量
实验研究了固体边界附近多个火花产生的气泡之间的相互作用。定性研究采用高速成像技术来观察气泡形状的演变,并采用 PVDF 传感器来测量冲击力。类似大小的气泡同步产生,气泡或边界之间的距离尽可能小。两个水平排列的气泡的喷射方向受边界附近的邻近参数 (γ) 的影响很大。此外,还介绍了气泡间距 (η) 的作用及其对冲击力强度的影响。研究发现,当 η 值较小时,水平气泡对的冲击力最大,而垂直气泡对和对角气泡对的冲击力最小。三个气泡排列在一起,中间一个气泡比左右两个气泡小、相似或大。在所有情况下,将较大的气泡置于中间确实会对边界产生最大的破坏性影响。此外,在本研究中应用的各种无量纲参数组合下,气泡变形特征各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信