Yi-Chun Chen, Xin-Yu Jiang, Jia-Yin Lin, Bui Xuan Thanh, Haitao Wang, Chao-Wei Huang, Suresh Ghotekar, Chih-Feng Huang, Kun-Yi Andrew Lin
{"title":"MOF-Derived Bimetal-Embedded Carbon with Etched Morphologies as an Efficient Activator of Peroxymonosulfate for Eliminate Emerging Contaminants","authors":"Yi-Chun Chen, Xin-Yu Jiang, Jia-Yin Lin, Bui Xuan Thanh, Haitao Wang, Chao-Wei Huang, Suresh Ghotekar, Chih-Feng Huang, Kun-Yi Andrew Lin","doi":"10.1007/s11814-024-00108-2","DOIUrl":null,"url":null,"abstract":"<div><p>As bis(4-hydroxyphenyl)methanone (BHP) is one of the most common UV light stabilizers (UVLS), but exhibits endocrine disrupting toxicity, this study aims to develop useful sulfate radical-based techniques to eliminate BHP from water by activating peroxymonosulfate (PMS). Hence, while cobalt (Co) exhibits efficacy as a transition metal for the activation of PMS, the utilization of manganese/cobalt (Mn/Co) bimetallic oxides presents an even more encouraging prospect as heterogeneous catalysts for PMS activation. In this study, we have successfully produced N-doped carbon-supported Mn/Co nanoparticles (NCMC) with a distinctive hollow-engineered nanostructure. The synthesis involved the utilization of Co-MOF as a precursor, followed by easy etching and Mn doping to achieve the desired composition of Mn/Co bimetallic oxide nanoparticles. The inclusion of Mn dopant facilitates the integration of Mn/Co nanoparticles into the hollow-structured N-doped carbon matrix. NCMC demonstrates much higher activity compared to NCC and the benchmark catalyst, Co<sub>3</sub>O<sub>4</sub> NP, in terms of PMS activation for the degradation of BHP. The findings of the eco-toxicity study indicate that the degradation of BHP by NCMC + PMS does not yield hazardous or extremely toxic byproducts, so establishing NCMC as a potentially effective heterogeneous catalyst for activating PMS in the degradation of BHP.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 6","pages":"1815 - 1831"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00108-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As bis(4-hydroxyphenyl)methanone (BHP) is one of the most common UV light stabilizers (UVLS), but exhibits endocrine disrupting toxicity, this study aims to develop useful sulfate radical-based techniques to eliminate BHP from water by activating peroxymonosulfate (PMS). Hence, while cobalt (Co) exhibits efficacy as a transition metal for the activation of PMS, the utilization of manganese/cobalt (Mn/Co) bimetallic oxides presents an even more encouraging prospect as heterogeneous catalysts for PMS activation. In this study, we have successfully produced N-doped carbon-supported Mn/Co nanoparticles (NCMC) with a distinctive hollow-engineered nanostructure. The synthesis involved the utilization of Co-MOF as a precursor, followed by easy etching and Mn doping to achieve the desired composition of Mn/Co bimetallic oxide nanoparticles. The inclusion of Mn dopant facilitates the integration of Mn/Co nanoparticles into the hollow-structured N-doped carbon matrix. NCMC demonstrates much higher activity compared to NCC and the benchmark catalyst, Co3O4 NP, in terms of PMS activation for the degradation of BHP. The findings of the eco-toxicity study indicate that the degradation of BHP by NCMC + PMS does not yield hazardous or extremely toxic byproducts, so establishing NCMC as a potentially effective heterogeneous catalyst for activating PMS in the degradation of BHP.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.