Empirical models and artificial intelligence for estimating hourly diffuse solar radiation in the state of Alagoas, Northeastern Brazil

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Joana Madeira Krieger , Cicero Manoel dos Santos , Gustavo Bastos Lyra , José Leonaldo de Souza , Ricardo Araujo Ferreira Junior , Anthony Carlos Silva Porfirio , Guilherme Bastos Lyra , Marcel Carvalho Abreu
{"title":"Empirical models and artificial intelligence for estimating hourly diffuse solar radiation in the state of Alagoas, Northeastern Brazil","authors":"Joana Madeira Krieger ,&nbsp;Cicero Manoel dos Santos ,&nbsp;Gustavo Bastos Lyra ,&nbsp;José Leonaldo de Souza ,&nbsp;Ricardo Araujo Ferreira Junior ,&nbsp;Anthony Carlos Silva Porfirio ,&nbsp;Guilherme Bastos Lyra ,&nbsp;Marcel Carvalho Abreu","doi":"10.1016/j.jastp.2024.106269","DOIUrl":null,"url":null,"abstract":"<div><p>Diffuse solar irradiation (H<sub>D</sub>) data are essential for the design and management of photovoltaic solar systems, biosphere-atmosphere modeling, and other applications. However, H<sub>D</sub> observations are scarce in several locations, especially in tropical regions. Employing hourly diffuse solar irradiation (<span><math><msubsup><mi>H</mi><mi>D</mi><mi>h</mi></msubsup></math></span>) and global solar irradiation (<span><math><msubsup><mi>H</mi><mi>G</mi><mi>h</mi></msubsup></math></span>) data collected between 2002─2003 and 2007─2008 in Alagoas State, Northeast Brazil, this study assesses various modeling techniques. Empirical models, including third-degree polynomial, logistic, sigmoidal, and rational functions, were compared with AI methods such as artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Additionally, it explores how solarimetric and meteorological variables impact the performance of these models. The empirical models showed similar performance in estimating <span><math><mspace></mspace><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup><mspace></mspace><mo>(</mo><mo>=</mo><mspace></mspace><msubsup><mi>H</mi><mi>D</mi><mi>h</mi></msubsup><mspace></mspace><mo>/</mo><mspace></mspace><msubsup><mi>H</mi><mi>G</mi><mi>h</mi></msubsup><mo>)</mo><mspace></mspace><mspace></mspace></math></span> (r<sup>2</sup> &gt; 0.726, modified Willmott – d<sub>m</sub> &gt; 0.704, and RMSD &lt; 0.103), with the third-degree polynomial model standing out. The empirical models had difficulty estimating <span><math><mrow><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup></mrow></math></span> for hourly atmospheric transmittance <span><math><mo>(</mo><msubsup><mi>K</mi><mi>T</mi><mi>h</mi></msubsup><mo>)</mo></math></span> &gt; 0.80, which indicated that they are not able to adequately simulate clear sky conditions, mostly due to surface reflections and clouds at the end of the day. ANN (r<sup>2</sup> &gt; 0.718, d<sub>m</sub> &gt; 0.702, and RMSD &lt; 0.105) showed better precision and accuracy of estimates for a greater number of schemes in relation to SVM and ANFIS (r<sup>2</sup> &gt; 0.704, d<sub>m</sub> &gt; 0.699, RMSD &lt; 0.108) and to empirical models. AI methods were able to represent the complexity of these conditions, with overall performance in estimating <span><math><mrow><msubsup><mi>K</mi><mi>D</mi><mi>h</mi></msubsup></mrow></math></span> superior or equivalent to empirical models. This study underscores the significance of exploring diverse methods for H<sub>D</sub> estimation, demonstrating promising potential for accurate and reliable estimation of hourly diffuse solar irradiation.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106269"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136468262400097X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse solar irradiation (HD) data are essential for the design and management of photovoltaic solar systems, biosphere-atmosphere modeling, and other applications. However, HD observations are scarce in several locations, especially in tropical regions. Employing hourly diffuse solar irradiation (HDh) and global solar irradiation (HGh) data collected between 2002─2003 and 2007─2008 in Alagoas State, Northeast Brazil, this study assesses various modeling techniques. Empirical models, including third-degree polynomial, logistic, sigmoidal, and rational functions, were compared with AI methods such as artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Additionally, it explores how solarimetric and meteorological variables impact the performance of these models. The empirical models showed similar performance in estimating KDh(=HDh/HGh) (r2 > 0.726, modified Willmott – dm > 0.704, and RMSD < 0.103), with the third-degree polynomial model standing out. The empirical models had difficulty estimating KDh for hourly atmospheric transmittance (KTh) > 0.80, which indicated that they are not able to adequately simulate clear sky conditions, mostly due to surface reflections and clouds at the end of the day. ANN (r2 > 0.718, dm > 0.702, and RMSD < 0.105) showed better precision and accuracy of estimates for a greater number of schemes in relation to SVM and ANFIS (r2 > 0.704, dm > 0.699, RMSD < 0.108) and to empirical models. AI methods were able to represent the complexity of these conditions, with overall performance in estimating KDh superior or equivalent to empirical models. This study underscores the significance of exploring diverse methods for HD estimation, demonstrating promising potential for accurate and reliable estimation of hourly diffuse solar irradiation.

用于估算巴西东北部阿拉戈斯州每小时漫射太阳辐射的经验模型和人工智能
漫反射太阳辐照(HD)数据对于光伏太阳能系统的设计和管理、生物圈-大气建模以及其他应用至关重要。然而,在一些地方,尤其是热带地区,太阳漫射观测数据十分匮乏。本研究利用 2002-2003 年至 2007-2008 年期间在巴西东北部阿拉戈斯州收集的每小时漫射太阳辐照(HDh)和全球太阳辐照(HGh)数据,对各种建模技术进行了评估。包括三度多项式函数、对数函数、西格玛函数和有理函数在内的经验模型与人工神经网络(ANN)、支持向量机(SVM)和自适应神经模糊推理系统(ANFIS)等人工智能方法进行了比较。此外,它还探讨了日照和气象变量如何影响这些模型的性能。经验模型在估计 KDh(=HDh/HGh)方面表现出相似的性能(r2 >0.726,修正的 Willmott - dm >0.704,RMSD <0.103),其中三度多项式模型表现突出。经验模型难以估算每小时大气透过率(KTh)为 0.80 的 KDh,这表明它们无法充分模拟晴空条件,这主要是由于地表反射和日终云层造成的。与 SVM 和 ANFIS(r2:0.704,dm:0.699,RMSD:0.108)以及经验模型相比,ANN(r2:0.718,dm:0.702,RMSD:0.105)对更多方案的估计精度和准确度更高。人工智能方法能够表现这些条件的复杂性,在估计 KDh 方面的总体性能优于或等同于经验模型。这项研究强调了探索不同方法进行HD估算的重要性,显示了准确可靠地估算每小时漫射太阳辐照的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信