{"title":"Superior triethylamine-sensing properties based on SnO2 hollow nanospheres synthesized via one-step process","authors":"","doi":"10.1016/j.pnsc.2024.05.015","DOIUrl":null,"url":null,"abstract":"<div><p>Due to serious harm of triethylamine (TEA) to environmental safety and human health, it is significant to synthesize gas-sensitive materials with high performance for TEA detection. However, it is still a challenge to achieve high-sensitivity detection of TEA at low temperature for a sensor synthesized through an economical and efficient method. In this work, hollow-structured SnO<sub>2</sub> (HS-SnO<sub>2</sub><span>) nanospheres<span><span> have been fabricated by a facile, low-cost hydrothermal method in one step, which exhibit superior TEA-sensing properties, including not only ultrahigh response (127.75) for 100 ppm TEA, good selectivity, but also fast response and recovery time (17/28 s), low detection threshold (1 ppm) and robust stability at a relatively low optimum operational temperature of 225 °C. The excellent gas-sensitizing performances are ascribed to porous hollow structures with rich </span>oxygen vacancies that provide abundant active sites for raising O</span></span><sub>2</sub> adsorption and reaction of TEA and oxygen species. This work offers an effective and economical strategy for fabricating high-performance TEA sensors for industrial applications.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001370","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to serious harm of triethylamine (TEA) to environmental safety and human health, it is significant to synthesize gas-sensitive materials with high performance for TEA detection. However, it is still a challenge to achieve high-sensitivity detection of TEA at low temperature for a sensor synthesized through an economical and efficient method. In this work, hollow-structured SnO2 (HS-SnO2) nanospheres have been fabricated by a facile, low-cost hydrothermal method in one step, which exhibit superior TEA-sensing properties, including not only ultrahigh response (127.75) for 100 ppm TEA, good selectivity, but also fast response and recovery time (17/28 s), low detection threshold (1 ppm) and robust stability at a relatively low optimum operational temperature of 225 °C. The excellent gas-sensitizing performances are ascribed to porous hollow structures with rich oxygen vacancies that provide abundant active sites for raising O2 adsorption and reaction of TEA and oxygen species. This work offers an effective and economical strategy for fabricating high-performance TEA sensors for industrial applications.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.