B.T. Anilkumar (Assistant Professor) , A Sabarinath (Scientist)
{"title":"Grouping and long term prediction of sunspot cycle characteristics-A fuzzy clustering approach","authors":"B.T. Anilkumar (Assistant Professor) , A Sabarinath (Scientist)","doi":"10.1016/j.ascom.2024.100836","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the pattern recognition algorithm called fuzzy c-means clustering, grouping of sunspot cycles has been carried out. It is found that, optimally the sunspot cycles can be divided in to two groups; we name it as Large Group and Small Group. Based on the fuzzy membership values the groups are derived. According to our analysis, cycles 1,5,6,7,12,13,14,15,16 and 24 belongs to the Small class, where as cycles 2,3,4,8,9,10,11,17,18,19,20,21,22, and 23 belongs to the Large class. Based on the features of each group and its fuzzy cluster center, prediction of cycle 25 is also been made. Also on the periodicity of the occurrence of the groups, a new cyclic behaviour has been found for the occurrences of the identical sunspot cycles. According to our study Cycle 25 belongs to small class and further we predict that the future cycle up to cycle 32 may fall in small group.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100836"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000519","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the pattern recognition algorithm called fuzzy c-means clustering, grouping of sunspot cycles has been carried out. It is found that, optimally the sunspot cycles can be divided in to two groups; we name it as Large Group and Small Group. Based on the fuzzy membership values the groups are derived. According to our analysis, cycles 1,5,6,7,12,13,14,15,16 and 24 belongs to the Small class, where as cycles 2,3,4,8,9,10,11,17,18,19,20,21,22, and 23 belongs to the Large class. Based on the features of each group and its fuzzy cluster center, prediction of cycle 25 is also been made. Also on the periodicity of the occurrence of the groups, a new cyclic behaviour has been found for the occurrences of the identical sunspot cycles. According to our study Cycle 25 belongs to small class and further we predict that the future cycle up to cycle 32 may fall in small group.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.