A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes
{"title":"A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes","authors":"","doi":"10.1016/j.cclet.2024.110099","DOIUrl":null,"url":null,"abstract":"<div><div>Metal complexes hold significant promise in tumor diagnosis and treatment. However, their potential applications in photodynamic therapy (PDT) are hindered by issues such as poor photostability, low yield of reactive oxygen species (ROS), and aggregation-induced ROS quenching. To address these challenges, we present a molecular self-assembly strategy utilizing aggregation-induced emission (AIE) conjugates for metal complexes. As a proof of concept, we synthesized a mitochondrial-targeting cyclometalated Ir(III) photosensitizer Ir-TPE. This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups. Ir-TPE readily self-assembles into nanoaggregates in aqueous solution, leading to a significant production of ROS upon light irradiation. Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria, resulting in mitochondrial DNA damage. This damage can lead to ferroptosis and autophagy, two forms of cell death that are highly cytotoxic to cancer cells. The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS, leading to a more pronounced cytotoxic effect. <em>In vitro</em> and <em>in vivo</em> experiments demonstrate this aggregation-enhanced PDT approach achieves effective <em>in situ</em> tumor eradication. This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110099"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724006181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal complexes hold significant promise in tumor diagnosis and treatment. However, their potential applications in photodynamic therapy (PDT) are hindered by issues such as poor photostability, low yield of reactive oxygen species (ROS), and aggregation-induced ROS quenching. To address these challenges, we present a molecular self-assembly strategy utilizing aggregation-induced emission (AIE) conjugates for metal complexes. As a proof of concept, we synthesized a mitochondrial-targeting cyclometalated Ir(III) photosensitizer Ir-TPE. This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups. Ir-TPE readily self-assembles into nanoaggregates in aqueous solution, leading to a significant production of ROS upon light irradiation. Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria, resulting in mitochondrial DNA damage. This damage can lead to ferroptosis and autophagy, two forms of cell death that are highly cytotoxic to cancer cells. The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS, leading to a more pronounced cytotoxic effect. In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication. This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.