Multiplicative isomorphisms and derivations on axial algebras

Pub Date : 2024-06-12 DOI:10.1016/j.jpaa.2024.107753
Bruno L.M. Ferreira , Douglas de Araujo Smigly , Elisabete Barreiro
{"title":"Multiplicative isomorphisms and derivations on axial algebras","authors":"Bruno L.M. Ferreira ,&nbsp;Douglas de Araujo Smigly ,&nbsp;Elisabete Barreiro","doi":"10.1016/j.jpaa.2024.107753","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we show that the multiplicative derivations on <span><math><mi>J</mi><mo>(</mo><mi>α</mi><mo>)</mo></math></span>-axial algebras, with <span><math><mi>α</mi><mo>≠</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, are additive under suitable conditions, which nowadays are called Martindale-type conditions. Besides, with proper assumptions, we proceed to study the additivity of multiplicative isomorphisms and derivations in the context of <span><math><mi>M</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span>-axial algebras, except for multiplicative derivations when <span><math><mi>β</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this case, we mention a research question at the end.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show that the multiplicative derivations on J(α)-axial algebras, with α1,0,12, are additive under suitable conditions, which nowadays are called Martindale-type conditions. Besides, with proper assumptions, we proceed to study the additivity of multiplicative isomorphisms and derivations in the context of M(α,β)-axial algebras, except for multiplicative derivations when β=12. In this case, we mention a research question at the end.

分享
查看原文
轴代数上的乘法同构和派生
在本文中,我们证明了在α≠1,0,12 的情况下,J(α)轴代数上的乘法推导在适当的条件下是可加的,这些条件现在被称为马丁代尔型条件。此外,在适当的假设条件下,我们继续研究 M(α,β)- 轴代数的乘法同构和派生的可加性,但当 β=12 时的乘法派生除外。在这种情况下,我们在最后提到了一个研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信