Rui-Bo Jin , Zi-Qi Zeng , Chenglong You , Chenzhi Yuan
{"title":"Quantum interferometers: Principles and applications","authors":"Rui-Bo Jin , Zi-Qi Zeng , Chenglong You , Chenzhi Yuan","doi":"10.1016/j.pquantelec.2024.100519","DOIUrl":null,"url":null,"abstract":"<div><p>Interference, which refers to the phenomenon associated with the superposition of waves, has played a crucial role in the advancement of physics and finds a wide range of applications in physical and engineering measurements. Interferometers are experimental setups designed to observe and manipulate interference. With the development of technology, many quantum interferometers have been discovered and have become cornerstone tools in the field of quantum physics. Quantum interferometers not only explore the nature of the quantum world but also have extensive applications in quantum information technology, such as quantum communication, quantum computing, and quantum measurement. In this review, we analyze and summarize three typical quantum interferometers: the Hong–Ou–Mandel (HOM) interferometer, the N00N state interferometer, and the Franson interferometer. We focus on the principles and applications of these three interferometers. In the principles section, we present the theoretical models for these interferometers, including single-mode theory and multi-mode theory. In the applications section, we review the applications of these interferometers in quantum communication, computation, and measurement. We hope that this review article will promote the development of quantum interference in both fundamental science and practical engineering applications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"96 ","pages":"Article 100519"},"PeriodicalIF":7.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672724000223","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Interference, which refers to the phenomenon associated with the superposition of waves, has played a crucial role in the advancement of physics and finds a wide range of applications in physical and engineering measurements. Interferometers are experimental setups designed to observe and manipulate interference. With the development of technology, many quantum interferometers have been discovered and have become cornerstone tools in the field of quantum physics. Quantum interferometers not only explore the nature of the quantum world but also have extensive applications in quantum information technology, such as quantum communication, quantum computing, and quantum measurement. In this review, we analyze and summarize three typical quantum interferometers: the Hong–Ou–Mandel (HOM) interferometer, the N00N state interferometer, and the Franson interferometer. We focus on the principles and applications of these three interferometers. In the principles section, we present the theoretical models for these interferometers, including single-mode theory and multi-mode theory. In the applications section, we review the applications of these interferometers in quantum communication, computation, and measurement. We hope that this review article will promote the development of quantum interference in both fundamental science and practical engineering applications.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.