Fei Liu , Baofeng Pan , Changjun Zhou , Ge Li , Xiaocun Wang , Jiaquan Li
{"title":"Study of interfacial transition zones between magnesium phosphate cement and Portland cement concrete pavement","authors":"Fei Liu , Baofeng Pan , Changjun Zhou , Ge Li , Xiaocun Wang , Jiaquan Li","doi":"10.1016/j.jtte.2022.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>The Portland cement concrete pavement (PCCP) often suffers from different environmental distresses and vehicle load failure, resulting in slab corner fractures, potholes, and other diseases. Rapid repair has become one of the effective ways to open traffic rapidly. In this study, a novel type of rapid repair material, basalt fiber reinforced polymer modified magnesium phosphate cement (BFPMPC), is used to rapidly repair PCCP. Notably, the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones (ITZs) formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair. The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined. The experimental results show that the elastic modulus of ITZ-1 with a width of about 20 μm can be regarded as 0.098 times of the aggregate, and 0.51 times of the ordinary Portland cement (OPC) mortar. The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC. A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method (XFEM) to study the mechanical properties of the repair interface. The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure, which is consistent with the nano-indentation experimental results.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000503/pdfft?md5=949edb0d1e5ec9a15e42b9dac79281a5&pid=1-s2.0-S2095756424000503-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000503","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The Portland cement concrete pavement (PCCP) often suffers from different environmental distresses and vehicle load failure, resulting in slab corner fractures, potholes, and other diseases. Rapid repair has become one of the effective ways to open traffic rapidly. In this study, a novel type of rapid repair material, basalt fiber reinforced polymer modified magnesium phosphate cement (BFPMPC), is used to rapidly repair PCCP. Notably, the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones (ITZs) formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair. The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined. The experimental results show that the elastic modulus of ITZ-1 with a width of about 20 μm can be regarded as 0.098 times of the aggregate, and 0.51 times of the ordinary Portland cement (OPC) mortar. The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC. A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method (XFEM) to study the mechanical properties of the repair interface. The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure, which is consistent with the nano-indentation experimental results.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.