{"title":"Interface engineering of Z-scheme heterojunction for photocatalytic water splitting","authors":"Daming Zhao , Yuxiao Yang , Vasileios Binas , Shaohua Shen","doi":"10.1016/j.fmre.2024.05.017","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic water splitting technology can directly convert solar energy into H<sub>2</sub> via a zero-carbon route, offering a sustainable solution for solar utilization and H<sub>2</sub> supply. Among various developed photocatalysts, Z-scheme heterojunction mimicking natural photosynthesis by combining two dissimilar semiconductors for redox reactions in series has unequivocally demonstrated its superiority in enhanced charge transfer, robust redox driving force, and wide optical absorption range. A comprehensive understanding on the fundamental principles of interface engineering between semiconductor components is the key to construct an efficient Z-scheme heterojunction. By focusing on different types of semiconductors, this article thoroughly expounds the coupling principles of components in binary mediator-free and ternary solid-mediator Z-scheme heterojunctions for photocatalytic water splitting, from the viewpoint of band structure alignment and interfacial electric field design. In addition to the well summarized research progresses in recent years, perspectives on the challenges and opportunities for developing advanced Z-scheme heterojunctions are provided.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 5","pages":"Pages 2204-2208"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824002589","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic water splitting technology can directly convert solar energy into H2 via a zero-carbon route, offering a sustainable solution for solar utilization and H2 supply. Among various developed photocatalysts, Z-scheme heterojunction mimicking natural photosynthesis by combining two dissimilar semiconductors for redox reactions in series has unequivocally demonstrated its superiority in enhanced charge transfer, robust redox driving force, and wide optical absorption range. A comprehensive understanding on the fundamental principles of interface engineering between semiconductor components is the key to construct an efficient Z-scheme heterojunction. By focusing on different types of semiconductors, this article thoroughly expounds the coupling principles of components in binary mediator-free and ternary solid-mediator Z-scheme heterojunctions for photocatalytic water splitting, from the viewpoint of band structure alignment and interfacial electric field design. In addition to the well summarized research progresses in recent years, perspectives on the challenges and opportunities for developing advanced Z-scheme heterojunctions are provided.