A photonics perspective on computing with physical substrates

Q1 Physics and Astronomy
S. Abreu , I. Boikov , M. Goldmann , T. Jonuzi , A. Lupo , S. Masaad , L. Nguyen , E. Picco , G. Pourcel , A. Skalli , L. Talandier , B. Vettelschoss , E.A. Vlieg , A. Argyris , P. Bienstman , D. Brunner , J. Dambre , L. Daudet , J.D. Domenech , I. Fischer , S.K. Turitsyn
{"title":"A photonics perspective on computing with physical substrates","authors":"S. Abreu ,&nbsp;I. Boikov ,&nbsp;M. Goldmann ,&nbsp;T. Jonuzi ,&nbsp;A. Lupo ,&nbsp;S. Masaad ,&nbsp;L. Nguyen ,&nbsp;E. Picco ,&nbsp;G. Pourcel ,&nbsp;A. Skalli ,&nbsp;L. Talandier ,&nbsp;B. Vettelschoss ,&nbsp;E.A. Vlieg ,&nbsp;A. Argyris ,&nbsp;P. Bienstman ,&nbsp;D. Brunner ,&nbsp;J. Dambre ,&nbsp;L. Daudet ,&nbsp;J.D. Domenech ,&nbsp;I. Fischer ,&nbsp;S.K. Turitsyn","doi":"10.1016/j.revip.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"12 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428324000030/pdfft?md5=00dd40c0315d911920d9b0566304beed&pid=1-s2.0-S2405428324000030-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428324000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.

从光子学角度看使用物理基板进行计算
我们从物理学和计算之间的基本关系的角度,探讨了利用物理系统进行计算的条件以及实现这一目标的实用方法。传统的数字计算机将离散性强加在连续的基底上,而非常规计算则不同,它包含了物理系统的固有特性。我们同时探索物理实现和应用计算范式的复杂性,讨论非常规计算的跨学科发展。在此,我们将重点关注光子基底在非常规计算方面的潜力,通过实施人工神经网络来解决数据驱动的机器学习任务。我们讨论了几种光子神经网络的实现方法,强调了它们在速度和能效方面相对于电子网络的潜在优势。最后,我们探讨了在物理基底中实现学习和可编程性所面临的挑战,并概述了未来研究的关键策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信