Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY
Yemao He , Johnny Qing Zhou , Yanan Jiao , Hongshuai Lei , Zeang Zhao , Daining Fang
{"title":"Ballistic response mechanism and resistance-driven evaluation method of UHMWPE composite","authors":"Yemao He ,&nbsp;Johnny Qing Zhou ,&nbsp;Yanan Jiao ,&nbsp;Hongshuai Lei ,&nbsp;Zeang Zhao ,&nbsp;Daining Fang","doi":"10.1016/j.dt.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><div>The use of ultra-high molecular weight polyethylene (UHMWPE) composite in the design of lightweight protective equipment, has gained a lot of interest. However, there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance. This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses. Then, a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance. The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes: local response, structural response, and coupled response. The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness. The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile, the bulging height on the rear face of the laminate, the thickness of remaining sub-laminate, and residual velocity of the projectile. The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%, demonstrating that the established evaluation model possessed high degree of prediction accuracy.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"44 ","pages":"Pages 1-16"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of ultra-high molecular weight polyethylene (UHMWPE) composite in the design of lightweight protective equipment, has gained a lot of interest. However, there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance. This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses. Then, a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance. The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes: local response, structural response, and coupled response. The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness. The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile, the bulging height on the rear face of the laminate, the thickness of remaining sub-laminate, and residual velocity of the projectile. The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%, demonstrating that the established evaluation model possessed high degree of prediction accuracy.
超高分子量聚乙烯复合材料的弹道响应机制和阻力驱动评估方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信