On 𝑝-adic 𝐿-functions for Hilbert modular forms

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
John Bergdall, David Hansen
{"title":"On 𝑝-adic 𝐿-functions for Hilbert modular forms","authors":"John Bergdall, David Hansen","doi":"10.1090/memo/1489","DOIUrl":null,"url":null,"abstract":"We construct \n\n \n p\n p\n \n\n-adic \n\n \n L\n L\n \n\n-functions associated with \n\n \n p\n p\n \n\n-refined cohomological cuspidal Hilbert modular forms over any totally real field under a mild hypothesis. Our construction is canonical, varies naturally in \n\n \n p\n p\n \n\n-adic families, and does not require any small slope or non-criticality assumptions on the \n\n \n p\n p\n \n\n-refinement. The main new ingredients are an adelic definition of a canonical map from overconvergent cohomology to a space of locally analytic distributions on the relevant Galois group, and a smoothness theorem for certain eigenvarieties at critically refined points.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct p p -adic L L -functions associated with p p -refined cohomological cuspidal Hilbert modular forms over any totally real field under a mild hypothesis. Our construction is canonical, varies naturally in p p -adic families, and does not require any small slope or non-criticality assumptions on the p p -refinement. The main new ingredients are an adelic definition of a canonical map from overconvergent cohomology to a space of locally analytic distributions on the relevant Galois group, and a smoothness theorem for certain eigenvarieties at critically refined points.
论希尔伯特模态的𝑝-adic𝐿-函数
在一个温和的假设条件下,我们构建了与任何全实数域上 p p 精化同调尖顶希尔伯特模形式相关的 p p -adic L L 函数。我们的构造是典型的,在 p p -adic 族中自然变化,并且不需要任何小斜率或 p p - 精化的非临界假设。主要的新成分是一个从过敛同调到相关伽罗瓦群上局部解析分布空间的规范映射的自洽定义,以及在临界细化点上某些特征变量的平滑性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信