Development and optimization of a neural network model using genetic algorithm to predict the performance of a packed bed reactor treating sulphate-rich wastewater

Q1 Environmental Science
Manoj Kumar , Rohil Saraf , Shishir Kumar Behera , Raja Das , Mansi Aliveli , Arindam Sinharoy , Eldon R. Rene , Ravi Krishnaiah , Kannan Pakshirajan
{"title":"Development and optimization of a neural network model using genetic algorithm to predict the performance of a packed bed reactor treating sulphate-rich wastewater","authors":"Manoj Kumar ,&nbsp;Rohil Saraf ,&nbsp;Shishir Kumar Behera ,&nbsp;Raja Das ,&nbsp;Mansi Aliveli ,&nbsp;Arindam Sinharoy ,&nbsp;Eldon R. Rene ,&nbsp;Ravi Krishnaiah ,&nbsp;Kannan Pakshirajan","doi":"10.1016/j.cscee.2024.100793","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of a packed bed reactor (PBR) containing immobilized sulphate reducing bacteria for sulphate removal from wastewater, utilizing carbon monoxide (CO) as the sole electron donor, is demonstrated. The performance of the PBR system in terms of CO and sulphate removal efficiencies (%RE<sub>CO</sub> and %RE<sub>sulphate</sub>, respectively) was predicted using three parameters, i.e<em>.</em> the hydraulic retention time (HRT, h), inlet concentrations of CO (IC<sub>CO</sub>, mg/L) and sulphate (IC<sub>sulphate</sub>, mg/L). An artificial neural network (ANN) model with 3-14-2 topology was developed by training the experimental data through the Levenberg Marquardt (LM) algorithm. Using genetic algorithm (GA) with appropriate objective functions, optimal sets of inputs were obtained to ensure maximum RE at a minimum HRT. The ANN had an overall accuracy above 98%, with a correlation coefficient of 0.99 and a root mean square error of 1.66%, suggesting its good performance. The automation of sulphate-rich wastewater industry through GA identified solutions might be leveraged for efficient operation in terms of saving time and resources.</p></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"10 ","pages":"Article 100793"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666016424001877/pdfft?md5=65011006b61a384ee48bd855ac86908c&pid=1-s2.0-S2666016424001877-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016424001877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of a packed bed reactor (PBR) containing immobilized sulphate reducing bacteria for sulphate removal from wastewater, utilizing carbon monoxide (CO) as the sole electron donor, is demonstrated. The performance of the PBR system in terms of CO and sulphate removal efficiencies (%RECO and %REsulphate, respectively) was predicted using three parameters, i.e. the hydraulic retention time (HRT, h), inlet concentrations of CO (ICCO, mg/L) and sulphate (ICsulphate, mg/L). An artificial neural network (ANN) model with 3-14-2 topology was developed by training the experimental data through the Levenberg Marquardt (LM) algorithm. Using genetic algorithm (GA) with appropriate objective functions, optimal sets of inputs were obtained to ensure maximum RE at a minimum HRT. The ANN had an overall accuracy above 98%, with a correlation coefficient of 0.99 and a root mean square error of 1.66%, suggesting its good performance. The automation of sulphate-rich wastewater industry through GA identified solutions might be leveraged for efficient operation in terms of saving time and resources.

Abstract Image

利用遗传算法开发和优化神经网络模型,以预测处理富含硫酸盐废水的填料床反应器的性能
利用一氧化碳(CO)作为唯一的电子供体,展示了含有固定化硫酸盐还原菌的填料床反应器(PBR)去除废水中硫酸盐的性能。利用三个参数,即水力停留时间(HRT,小时)、一氧化碳(ICCO,毫克/升)和硫酸盐(ICsulphate,毫克/升)的入口浓度,预测了 PBR 系统在一氧化碳和硫酸盐去除率(分别为%RECO 和%REsulphate)方面的性能。通过 Levenberg Marquardt(LM)算法对实验数据进行训练,建立了具有 3-14-2 拓扑结构的人工神经网络(ANN)模型。利用具有适当目标函数的遗传算法(GA),获得了最佳输入集,以确保在最小的 HRT 条件下获得最大的 RE。ANN 的总体准确率超过 98%,相关系数为 0.99,均方根误差为 1.66%,表明其性能良好。通过 GA 确定的解决方案实现富含硫酸盐废水行业的自动化,可在节省时间和资源方面实现高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Chemical and Environmental Engineering
Case Studies in Chemical and Environmental Engineering Engineering-Engineering (miscellaneous)
CiteScore
9.20
自引率
0.00%
发文量
103
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信