Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma

IF 3.3 Q2 GASTROENTEROLOGY & HEPATOLOGY
Marwa Matboli , Gouda I. Diab , Maha Saad , Abdelrahman Khaled , Marian Roushdy , Marwa Ali , Hind A. ELsawi , Ibrahim H. Aboughaleb
{"title":"Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma","authors":"Marwa Matboli ,&nbsp;Gouda I. Diab ,&nbsp;Maha Saad ,&nbsp;Abdelrahman Khaled ,&nbsp;Marian Roushdy ,&nbsp;Marwa Ali ,&nbsp;Hind A. ELsawi ,&nbsp;Ibrahim H. Aboughaleb","doi":"10.1016/j.jceh.2024.101456","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC.</p></div><div><h3>Methods</h3><p>We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6).</p></div><div><h3>Results</h3><p>LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%).</p></div><div><h3>Conclusion</h3><p>Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.</p></div>","PeriodicalId":15479,"journal":{"name":"Journal of Clinical and Experimental Hepatology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Experimental Hepatology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973688324001130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC.

Methods

We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6).

Results

LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%).

Conclusion

Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.

基于机器学习识别与肝细胞癌诊断相关的关键特征 RNA 标识
背景肝细胞癌(HCC)是全球恶性肿瘤相关死亡率的第三大主要原因。早期准确识别 HCC 对患者的良好预后、疗效和生存率至关重要。我们的目标是开发一种机器学习模型,将差异表达的 RNA 特征与实验室参数结合起来,构建基于 RNA 特征的 HCC 诊断模型。方法我们使用了五种分类器(KNN、RF、SVM、LGBM 和 DNNs)来预测肝病(HCC)。这些分类器在 187 个样本上进行了训练,然后在 80 个样本上进行了测试。该模型包括 22 个特征(年龄、性别、吸烟、肝硬化、非肝硬化、白蛋白、ALT、AST 胆红素(总胆红素和直接胆红素)、INR、AFP、HBV Ag、HCV Abs、RQmiR-1298、RQmiR-1262、RQmiR-106b-3p、RQmRNARAB11A 和 RQSTAT1、RQmRNAATG12、RQLnc-WRAP53、RQLncRNA- RP11-513I15)。6).ResultsLGBM 预测 HCC 的准确率最高,达到 98.结论我们的机器学习模型结合了 RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 特征的表达数据和临床数据,是一种潜在的新型 HCC 诊断模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical and Experimental Hepatology
Journal of Clinical and Experimental Hepatology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.90
自引率
16.70%
发文量
537
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信