High-rate convergent multistep collocation techniques to a first-kind Volterra integral equation along with the proportional vanishing delay

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aws Mushtaq Mudheher, S. Pishbin, P. Darania, Shadi Malek Bagomghaleh
{"title":"High-rate convergent multistep collocation techniques to a first-kind Volterra integral equation along with the proportional vanishing delay","authors":"Aws Mushtaq Mudheher,&nbsp;S. Pishbin,&nbsp;P. Darania,&nbsp;Shadi Malek Bagomghaleh","doi":"10.1016/j.apnum.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we construct a considerably fast convergent multistep collocation technique in order to solve Volterra integral equations, especially first-kind ones with variable vanishing delays. Through a robust theoretical analysis, the optimal global convergence of the numerically achieved solutions to their exact counterparts has been demonstrated with the corresponding high orders. The allusion to the strategy of reformulating a first-kind Volterra integral equation into a second-kind Volterra functional integral equation, assists us for the establishment of regularity, existence and uniqueness features of analytical solution over under consideration equation. The existence and uniqueness of numerical solution have also been shown. Eventually, some test problems have been provided to evaluate effectiveness of the proposed multistep collocation technique.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we construct a considerably fast convergent multistep collocation technique in order to solve Volterra integral equations, especially first-kind ones with variable vanishing delays. Through a robust theoretical analysis, the optimal global convergence of the numerically achieved solutions to their exact counterparts has been demonstrated with the corresponding high orders. The allusion to the strategy of reformulating a first-kind Volterra integral equation into a second-kind Volterra functional integral equation, assists us for the establishment of regularity, existence and uniqueness features of analytical solution over under consideration equation. The existence and uniqueness of numerical solution have also been shown. Eventually, some test problems have been provided to evaluate effectiveness of the proposed multistep collocation technique.

第一类 Volterra 积分方程与比例消失延迟的高速收敛多步配位技术
在本研究中,我们构建了一种收敛速度相当快的多步配位技术,用于求解 Volterra 积分方程,尤其是具有可变消失延迟的第一类方程。通过稳健的理论分析,我们证明了数值解与精确解的最佳全局收敛性以及相应的高阶。将第一类 Volterra 积分方程重述为第二类 Volterra 函数积分方程的策略,有助于我们建立所考虑方程的解析解的正则性、存在性和唯一性特征。数值解的存在性和唯一性也得到了证明。最后,我们还提供了一些测试问题,以评估所提出的多步配位技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信