L. García de la Cruz , P. Alvaredo , J.M. Torralba , M. Campos
{"title":"Material extrusion: A promising tool for processing CoCrMo alloy with excellent wear resistance for biomedical applications","authors":"L. García de la Cruz , P. Alvaredo , J.M. Torralba , M. Campos","doi":"10.1016/j.matdes.2024.113089","DOIUrl":null,"url":null,"abstract":"<div><p>CoCrMo is a prevalent alloy in prosthesis manufacturing, characterized by its favorable biocompatibility, high resistance to corrosion and high wear-resistance. Material Extrusion (MEX) Additive Manufacturing allows control over microstructural homogeneity, minimizing material waste and enabling the selection of the geometry and size of the parts, key features in the biomedical field. Granule-based MEX has been recently developed and uses a granulated metal-polymer composite as starting material that is extruded to fabricate complex parts. The binder is eliminated and the final part is obtained after sintering. This research aims to investigate the potential of MEX as a promising route for fabricating CoCrMo parts for prosthesis manufacturing. A feedstock based on Paraffin Wax and High-Density Polyethylene as binder, was prepared with optimized solid loading, then screw based MEX printing parameters, in terms of printing temperature and extrusion flow, were explored to maximize density after sintering. The microstructure development was evaluated based on carbon content, shrinkage, density, grain size, and hardness and wear performance of the optimized samples investigated. Almost fully dense parts with a microstructure free of carbides and secondary phases has been developed, which enables an excellent wear response in terms of wear rate and wear coefficient.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524004635/pdfft?md5=98a6ac32c2dffafe09af0e8f2a12d495&pid=1-s2.0-S0264127524004635-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524004635","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
CoCrMo is a prevalent alloy in prosthesis manufacturing, characterized by its favorable biocompatibility, high resistance to corrosion and high wear-resistance. Material Extrusion (MEX) Additive Manufacturing allows control over microstructural homogeneity, minimizing material waste and enabling the selection of the geometry and size of the parts, key features in the biomedical field. Granule-based MEX has been recently developed and uses a granulated metal-polymer composite as starting material that is extruded to fabricate complex parts. The binder is eliminated and the final part is obtained after sintering. This research aims to investigate the potential of MEX as a promising route for fabricating CoCrMo parts for prosthesis manufacturing. A feedstock based on Paraffin Wax and High-Density Polyethylene as binder, was prepared with optimized solid loading, then screw based MEX printing parameters, in terms of printing temperature and extrusion flow, were explored to maximize density after sintering. The microstructure development was evaluated based on carbon content, shrinkage, density, grain size, and hardness and wear performance of the optimized samples investigated. Almost fully dense parts with a microstructure free of carbides and secondary phases has been developed, which enables an excellent wear response in terms of wear rate and wear coefficient.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.