Mohamed Abdel-Basset , Reda Mohamed , Safaa Saber , Ibrahim M. Hezam , Karam M. Sallam , Ibrahim A. Hameed
{"title":"Binary metaheuristic algorithms for 0–1 knapsack problems: Performance analysis, hybrid variants, and real-world application","authors":"Mohamed Abdel-Basset , Reda Mohamed , Safaa Saber , Ibrahim M. Hezam , Karam M. Sallam , Ibrahim A. Hameed","doi":"10.1016/j.jksuci.2024.102093","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the performance of three binary metaheuristic algorithms when applied to two distinct knapsack problems (0–1 knapsack problems (KP01) and multidimensional knapsack problems (MKP)). These binary algorithms are based on the classical mantis search algorithm (MSA), the classical quadratic interpolation optimization (QIO) method, and the well-known differential evolution (DE). Because these algorithms were designed for continuous optimization problems, they could not be used directly to solve binary knapsack problems. As a result, the V-shaped and S-shaped transfer functions are used to propose binary variants of these algorithms, such as binary differential evolution (BDE), binary quadratic interpolation optimization (BQIO), and binary mantis search algorithm (BMSA). These binary variants are evaluated using various high-dimensional KP01 examples and compared to several classical metaheuristic techniques to determine their efficacy. To enhance the performance of those binary algorithms, they are combined with repair operator 2 (RO2) to offer better hybrid variants, namely HMSA, HQIO, and HDE. Those hybrid algorithms are evaluated using several medium- and large-scale KP01 and MKP instances, as well as compared to other hybrid algorithms, to demonstrate their effectiveness. This comparison is conducted using three performance metrics: average fitness value, Friedman mean rank, and computational cost. The experimental findings demonstrate that HQIO is a strong alternative for solving KP01 and MKP. In addition, the proposed algorithms are applied to the Merkle-Hellman Knapsack Cryptosystem and the resource allocation problem in adaptive multimedia systems (AMS) to illustrate their effectiveness when applied to optimize those real applications. The experimental findings illustrate that the proposed HQIO is a strong alternative for handling various knapsack-based applications.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824001824/pdfft?md5=eecc477cb95abd1cca413bd63da31783&pid=1-s2.0-S1319157824001824-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824001824","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the performance of three binary metaheuristic algorithms when applied to two distinct knapsack problems (0–1 knapsack problems (KP01) and multidimensional knapsack problems (MKP)). These binary algorithms are based on the classical mantis search algorithm (MSA), the classical quadratic interpolation optimization (QIO) method, and the well-known differential evolution (DE). Because these algorithms were designed for continuous optimization problems, they could not be used directly to solve binary knapsack problems. As a result, the V-shaped and S-shaped transfer functions are used to propose binary variants of these algorithms, such as binary differential evolution (BDE), binary quadratic interpolation optimization (BQIO), and binary mantis search algorithm (BMSA). These binary variants are evaluated using various high-dimensional KP01 examples and compared to several classical metaheuristic techniques to determine their efficacy. To enhance the performance of those binary algorithms, they are combined with repair operator 2 (RO2) to offer better hybrid variants, namely HMSA, HQIO, and HDE. Those hybrid algorithms are evaluated using several medium- and large-scale KP01 and MKP instances, as well as compared to other hybrid algorithms, to demonstrate their effectiveness. This comparison is conducted using three performance metrics: average fitness value, Friedman mean rank, and computational cost. The experimental findings demonstrate that HQIO is a strong alternative for solving KP01 and MKP. In addition, the proposed algorithms are applied to the Merkle-Hellman Knapsack Cryptosystem and the resource allocation problem in adaptive multimedia systems (AMS) to illustrate their effectiveness when applied to optimize those real applications. The experimental findings illustrate that the proposed HQIO is a strong alternative for handling various knapsack-based applications.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.