Application of fractional derivatives in image quality assessment indices

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mariusz Frackiewicz, Henryk Palus
{"title":"Application of fractional derivatives in image quality assessment indices","authors":"Mariusz Frackiewicz,&nbsp;Henryk Palus","doi":"10.1016/j.apnum.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Objective image quality assessment involves the use of mathematical models to quantitatively describe image quality. FR-IQA (Full-Reference Image Quality Assessment) methods using reference images are also often used to evaluate image processing and computer vision algorithms. Quality indices often use gradient operators to express relevant visual information, such as edges. Fractional calculus has been applied in the last two decades in various fields such as signal processing, image processing, and pattern recognition. Fractional derivatives are generalizations of integer-order derivatives and can be computed using various operators such as the Riemann-Liouville, Caputo-Fabrizio, and Grünwald-Letnikov operators. In this paper, we propose a modification of the FSIMc image quality index by including fractional derivatives to extract and enhance edges. A study of the usefulness of fractional derivative in the FSIMc model was conducted by assessing Pearson, Spearman and Kendall correlations with MOS scores for images from the TID2013 and KADID-10k databases. Comparison of FD_FSIMc with the classic FSIMc shows an increase of several percent in the correlation coefficients for the modified index. The results obtained are superior to those other known approaches to FR-IQA that use fractional derivatives. The results encourage the use of fractional calculus.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001442/pdfft?md5=c5b941ec0099c65d784aced80ddf399e&pid=1-s2.0-S0168927424001442-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective image quality assessment involves the use of mathematical models to quantitatively describe image quality. FR-IQA (Full-Reference Image Quality Assessment) methods using reference images are also often used to evaluate image processing and computer vision algorithms. Quality indices often use gradient operators to express relevant visual information, such as edges. Fractional calculus has been applied in the last two decades in various fields such as signal processing, image processing, and pattern recognition. Fractional derivatives are generalizations of integer-order derivatives and can be computed using various operators such as the Riemann-Liouville, Caputo-Fabrizio, and Grünwald-Letnikov operators. In this paper, we propose a modification of the FSIMc image quality index by including fractional derivatives to extract and enhance edges. A study of the usefulness of fractional derivative in the FSIMc model was conducted by assessing Pearson, Spearman and Kendall correlations with MOS scores for images from the TID2013 and KADID-10k databases. Comparison of FD_FSIMc with the classic FSIMc shows an increase of several percent in the correlation coefficients for the modified index. The results obtained are superior to those other known approaches to FR-IQA that use fractional derivatives. The results encourage the use of fractional calculus.

分数导数在图像质量评估指数中的应用
客观图像质量评估涉及使用数学模型来定量描述图像质量。使用参考图像的 FR-IQA(全参考图像质量评估)方法也经常用于评估图像处理和计算机视觉算法。质量指数通常使用梯度算子来表达相关的视觉信息,如边缘。过去二十年来,分数微积分已被应用于信号处理、图像处理和模式识别等多个领域。分数导数是整数阶导数的一般化,可以使用各种算子进行计算,如黎曼-黎奥维尔算子、卡普托-法布里齐奥算子和格伦沃尔德-莱特尼科夫算子。在本文中,我们建议对 FSIMc 图像质量指数进行修改,加入分数导数来提取和增强边缘。通过评估 TID2013 和 KADID-10k 数据库图像中分数导数与 MOS 分数的皮尔逊、斯皮尔曼和肯德尔相关性,研究了分数导数在 FSIMc 模型中的实用性。将 FD_FSIMc 与经典的 FSIMc 进行比较后发现,修正指数的相关系数提高了几个百分点。获得的结果优于使用分数导数的其他已知 FR-IQA 方法。这些结果鼓励使用分数微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信