Steady-state multiscale CFD simulation of a circulating fluidized bed riser

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Zhaojie Ke , Yujie Tian , Fei Li , Bona Lu , Wei Wang
{"title":"Steady-state multiscale CFD simulation of a circulating fluidized bed riser","authors":"Zhaojie Ke ,&nbsp;Yujie Tian ,&nbsp;Fei Li ,&nbsp;Bona Lu ,&nbsp;Wei Wang","doi":"10.1016/j.partic.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Compared to transient simulation, steady-state simulation of circulating fluidized bed risers is more efficient, but is also harder to perform due to the complex scale-dependency of dense gas-solid flows. In this work, steady-state computational fluid dynamics (CFD) simulation of a riser is performed using the steady energy-minimization multi-scale (EMMS) drag. It is found that the steady state corresponds to an extremely large scale of length and time, thus the grid size required in steady-state simulation is larger than that in transient one. The time-averaged two-fluid model (TFM) coupled with the steady-state EMMS/1M drag model enables a good prediction of the S-shaped, axial solids distribution and the choking transition, whereas the two-phase turbulence and solids stress models are important in predicting the radially core-annular distribution of solids. So far as we know, this is the first time that one can predict the choking transition in a steady-state CFD simulation. Further improvement may need an EMMS modeling of the time-averaged solid stresses.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 54-64"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to transient simulation, steady-state simulation of circulating fluidized bed risers is more efficient, but is also harder to perform due to the complex scale-dependency of dense gas-solid flows. In this work, steady-state computational fluid dynamics (CFD) simulation of a riser is performed using the steady energy-minimization multi-scale (EMMS) drag. It is found that the steady state corresponds to an extremely large scale of length and time, thus the grid size required in steady-state simulation is larger than that in transient one. The time-averaged two-fluid model (TFM) coupled with the steady-state EMMS/1M drag model enables a good prediction of the S-shaped, axial solids distribution and the choking transition, whereas the two-phase turbulence and solids stress models are important in predicting the radially core-annular distribution of solids. So far as we know, this is the first time that one can predict the choking transition in a steady-state CFD simulation. Further improvement may need an EMMS modeling of the time-averaged solid stresses.

Abstract Image

循环流化床立管的稳态多尺度 CFD 模拟
与瞬态模拟相比,循环流化床立管的稳态模拟更有效,但由于高密度气固流的复杂尺度依赖性,稳态模拟也更难进行。在这项工作中,利用稳定能量最小化多尺度(EMMS)拖曳对立管进行了稳态计算流体动力学(CFD)模拟。研究发现,稳态对应的长度和时间尺度都非常大,因此稳态模拟所需的网格尺寸要大于瞬态模拟。时间平均双流体模型(TFM)与稳态 EMMS/1M 阻力模型相结合,可以很好地预测 S 形轴向固体分布和窒息转变,而两相湍流和固体应力模型对预测固体的径向核心环状分布非常重要。据我们所知,这是第一次可以在稳态 CFD 模拟中预测窒息转变。进一步的改进可能需要对时间平均固体应力进行 EMMS 建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信